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Csound is one of the best known and longest established programs in the field of audio-
programming. It was developed in the mid-1980s at the Massachusetts Institute of Technology
(MIT) by Barry Vercoe.

Csound's history lies deep in the roots of computer music. It is a direct descendant of the oldest
computer-program for sound synthesis, 'MusicN' by Max Mathews. Csound is free, distributed
under the LGPL licence and is tended and expanded by a core of developers with support from a
wider community.

Csound has been growing for more than 25 years. There are few things related to audio that you
cannot do with Csound. You can work by rendering offline, or in real-time by processing live audio
and synthesizing sound on the fly. You can control Csound via MIDI, OSC, or via the Csound API
(Application Programming Interface). In Csound, you will find the widest collection of tools for
sound synthesis and sound modification, including special filters and tools for spectral processing.

Is Csound difficult to learn? Generally, graphical audio programming languages like Pure Data
(more commonly known as Pd - see the Pure Data FLOSS Manual for further information), Max
or Reaktor are easier to learn than text-coded audio programming languages like Csound,
SuperCollider or ChucK. You cannot make a typo which produces an error which you do not
understand. You program without being aware that you are programming. It feels like patching
together different units in a studio. This is a fantastic approach. But when you deal with more
complex projects, a text-based programming language is often easier to use and debug, and
many people prefer to program by typing words and sentences rather than by wiring symbols
together using the mouse.

Thanks to the work of Victor Lazzarini and Davis Pyon, it is also very easy to use Csound as a
kind of audio engine inside Pd or Max. See the chapter Csound in other applications and the
information on CSound with Pd and CSound in MaxMSP for further information.

Amongst text-based audio programming languages, Csound is arguably the simplest. You do not
need to know anything about objects or functions. The basics of the Csound language are a
straightforward transfer of the signal flow paradigm to text.

For example, to create a 400 Hz sine oscillator with an amplitude of 0.2, this is the signal flow:



Frequency Amplitude
400 Hz 0.2

This is a possible transformation of the signal graph into Csound code:

instr Sine
asig oscils 0.2, 400, O
out aSig
endin

The oscillator is represented by the opcode oscils and gets its input arguments amplitude (0.2),
frequency (400) and phase (0) righthand. It produces an audio signal called aSig at the left side,
which is in turn the input of the second opcode out. The first and last lines encase these
connections inside an instrument called Sine. That's it.

But it is often difficult to find up to date resources that explain all of the things that are possible
with Csound. Documentation and tutorials produced by many experienced users tend to be
scattered across many different locations. This was one of the main motivations in producing
this manual: to facilitate a flow between the knowledge of contemporary Csound users and
those wishing to learn more about Csound.

Ten years after the milestone of Richard Boulanger's Csound Book the Csound FLOSS Manual is
intended to offer an easy-to-understand introduction and to provide a centre of up to date
information about the many features of Csound - not as detailed and in depth as the Csound
Book, but including new information and sharing this knowledge with the wider Csound
community.

Throughout this manual we will attempt a difficult balancing act: we want to provide users with
nearly everything important there is to know about Csound, but we also want to keep things
simple and concise to save you from drowning under the multitude of things that we could say
about Csound. Frequently this manual will link to other more detailed resources like the Canonical
Csound Reference Manual, the primary documentation provided by the Csound developers and
associated community over the years, and the Csound Journal (edited by Steven Yi and James
Hearon), a quarterly online publication with many great Csound-related articles.

Good luck and happy Csounding!



2. HOW TO USE THIS MANUAL

The goal of this manual is to provide a readable introduction to Csound. In no way is it meant as
a replacement for the Canonical Csound Reference Manual. It is intended as an introduction-
tutorial-reference hybrid, gathering the most important information you need for working with
Csound in a variety of situations. In many places, links are provided to other resources, such as
the official manual, the Csound Journal, example collections, and more.

It is not necessary to read each chapter in sequence, feel free to jump to any chapter that
interests you, although bear in mind that occasionally a chapter will make reference to a
previous one.

If you are new to Csound, the QUICK START chapter will be the best place to go to get started.
BASICS provides a general introduction to key concepts about digital sound vital to understanding
how Csound deals with audio. The CSOUND LANGUAGE chapter provides greater detail about
how Csound works and how to work with Csound.

SOUND SYNTHESIS introduces various methods of creating sound from scratch and SOUND
MODIFICATION describes various methods of transforming sounds that already exist within
Csound. SAMPLES outlines ways in which to record and play audio samples in Csound, an area
that might be of particular interest to those intent on using Csound as a real-time performance
instrument. The MIDI and OPEN SOUND CONTROL chapters focus on different methods of
controlling Csound using external software or hardware. The final chapters introduce various
front-ends that can be used to interface with the Csound engine and Csound's communication
with other applications.

If you would like to know more about a topic, and in particular about the use of any opcode,
refer first to the Canonical Csound Reference Manual.

Al files - examples and audio files - can be downloaded at www.csound-tutorial.net . If you use
CsoundQt, you can find all the examples in CsoundQt's examples menu under "Floss Manual
Examples".

Like other Audio Tools, Csound can produce extreme dynamic range. Be careful when you run
the examples! Start with a low volume setting on your amplifier and take special care when using
headphones.

You can help to improve this manual, either in reporting bugs or requests, or in joining as a
writer. Just contact one of the maintainers (see the list in ON THIS RELEASE).

Thanks to Alex Hofmann, this manual can be ordered as a print-on-demand at www.lulu.com.
Just use the search utility there and look for "Csound". Just the links will not work ...



3. ON THIS RELEASE

We are happy to announce the second release of the Csound Floss Manual. It has been an
exciting year for Csound, with many activities and important developments. Thanks to the long
and hard work of Steven Yi, John ffitch, Tito Latini and others, a new parser has been written.
This opens up many new possibilities for future language adaptations and more flexibility within
the Csound syntax. In autumn 2011, the first international Csound Conference took place at
HMTM Hannover, with many inspiring workshops, concerts, papers and most notably discussions
between developers and users. In early 2012, Jim Aikin's Csound Power! was published and it
represents a very well written introduction to Csound. In early spring, Victor Lazzarini and
Steven Yi published the first release of Csound on Android devices, and all developers are
currently pushing towards Csound6.

The first edition of the Csound Floss Manual has been a huge success. We are proud and glad to
see it used, linked and quoted in many places. It has come to be regarded as a complement to
the Csound Manual. We hope we can continue to reflect Csound's development in this manual.
The core writers of the Csound Floss manual would like to extend their thanks to Richard
Boulanger, John Clements and others for their support, and to all the writers for their various
contributions. Thanks also are due to Adam Hyde and the team at flossmanuals.net for
maintaining and developing this important platform for free libre open source software.

What's new in this Release

e New chapters:
o MACROS (Csound Language)
o CABBAGE (Csound Frontends)
o BUILDING CSOUND (Appendix)
o METHODS OF WRITING CSOUND SCORES (Appendix)
e Chapters now completed:
WAVESHAPING (Sound Synthesis)
PHYSICAL MODELLING (Sound Synthesis)
CONVOLUTION (Sound Modification)
CSOUND VIA TERMINAL (Csound Frontends)
o CSOUND UTILITIES
e Significant amendments and additions to the following chapters:
o AM/RM / WAVESHAPING (Sound Modification)
o GRANULAR SYNTHESIS (Sound Modification)
o CSOUND IN PD (Csound in Other Applications)
o LINKS (Appendix)
e New chapters as drafts:
o CSOUND IN ABLETON LIVE (Csound in Other Applications)
o CSOUND AS A VST PLUGIN (Csound in Other Applications)
o PYTHON IN CSOUNDQT
o LUA IN CSOUND
e Slight changes in the structure (the TERMINAL is now considered as a frontend, and THE
CSOUND API chapter is now part of the section Csound and other Programming Languages)

o o0 o o

Still on the To-Do-List:

e More and better illustrations

Adding examples for VBAP, Ambisonics etc in PANNING AND SPATIALIZATION (Sound
Modification)

Adding examples and explanations in METHODS OF WRITING CSOUND SCORES (Appendix)
Update OPCODE GUIDE (and more eyes on it at all)

Much more should be written in the GLOSSARY

Except the new drafted chapters PYTHON INSIDE CSOUND and EXTENDING CSOUND are
still to write.

[ ]

e o o o

Last summer Alex Hofmann put a lot of work into making this manual available as a book on
www.lulu.com. Just use the search utility there and look for "Csound", if you would like to obtain
a printed version. This second release will be available soon.



Surround Wunderbar Studios, Berlin, 30th March, 2012

Joachim Heintz & lain McCurdy

Foreword on the First Release

In spring 2010 a group of Csounders decided to start this project. The chapter outline was
suggested by Joachim Heintz with suggestions and improvements provided by Richard Boulanger,
Oeyvind Brandtsegg, Andrés Cabrera, Alex Hofmann, Jacob Joaquin, lain McCurdy, Rory Walsh and
others. Rory also pointed us to the FLOSS Manuals platform as a possible environment for
writing and publishing. Stefano Bonetti, Francois Pinot, Davis Pyon and Steven Yi joined later and
wrote chapters.

In a volunteer project like this, it is not always easy to sustain momentum so in the spring of
2011 some members of the team met in Berlin for a 'book sprint' to achieve a level of
completion, and publish a first release.

With heads spinning and square eyes we are happy and proud to offer this manual to you. At the
same time we realize that this is a first release with much potential for further improvement.
Several chapters have yet to be written, others are not yet complete and the differences
between the various authors in terms of the level at which they aim and their degree of detail
are perhaps larger than they should be.

This is therefore a beginning. Everyone is invited to improve this book. You can begin to write for
one of the empty chapters, contribute to an existing one or insert new examples where you feel
they are of benefit. You just need to create an account at http://booki.flossmanuals.net or to let
us know of your suggestions.

We hope you enjoy using this manual, we had fun writing it!
Berlin, 31st March, 201

Joachim Heintz Alex Hofmann lain McCurdy

jh at joachimheintz.de alex at boomclicks.de i_mccurdy at hotmail.com

You can order a printed version here:

http://www.lulu.com/product/paperback/csound---floss-manual/16265055



4. LICENSE

All chapters copyright of the authors (see below). Unless otherwise stated all chapters in this
manual licensed with GNU General Public License version 2

This documentation is free documentation; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

documentation; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
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Note that this book is a collective effort, so some of the contributors may not have been quoted
correctly. If you are one of them, please contact us, or simply put your name at the right place.
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5. DIGITAL AUDIO

At a purely physical level, sound is simply a mechanical disturbance of a medium. The medium in
question may be air, solid, liquid, gas or a mixture of several of these. This disturbance to the
medium causes molecules to move to and fro in a spring-like manner. As one molecule hits the
next, the disturbance moves through the medium causing sound to travel. These so called
compressions and rarefactions in the medium can be described as sound waves. The simplest
type of waveform, describing what is referred to as 'simple harmonic motion', is a sine wave.
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Each time the waveform signal goes above 0 the molecules are in a state of compression
meaning they are pushing towards each other. Every time the waveform signal drops below 0
the molecules are in a state of rarefaction meaning they are pulling away from each other. When
a waveform shows a clear repeating pattern, as in the case above, it is said to be periodic.
Periodic sounds give rise to the sensation of pitch.

ELEMENTS OF A SOUND WAVE

Periodic waves have four common parameters, and each of the four parameters affects the way
we perceive sound.

e Period: This is the length of time it takes for a waveform to complete one cycle. This
amount of time is referred to as t

e Wavelength(): the distance it takes for a wave to complete one full period. This is usually
measured in meters.

e Frequency: the number of cycles or periods per second. Frequency is measured in Hertz.
If a sound has a frequency of 440Hz it completes 440 cycles every second. Given a
frequency, one can easily calculate the period of any sound. Mathematically, the period is
the reciprocal of the frequency (and vice versa). In equation form, this is expressed as
follows.

Frequency = 1/Period Period = 1/Frequency

Therefore the frequency is the inverse of the period, so a wave of 100 Hz frequency has a
period of 1/100 or 0.01 secs, likewise a frequency of 256Hz has a period of 1/256, or 0.004
secs. To calculate the wavelength of a sound in any given medium we can use the following
equation:

wavelength = Velocity/Frequency

Humans can hear frequencies from 20Hz to 20000Hz (although this can differ dramatically from
individual to individual). You can read more about frequency in the next chapter.

e Phase: This is the starting point of a waveform. The starting point along the Y-axis of our
plotted waveform is not always 0. This can be expressed in degrees or in radians. A
complete cycle of a waveform will cover 360 degrees or (2 x pi) radians.



e Amplitude: Amplitude is represented by the y-axis of a plotted pressure wave. The
strength at which the molecules pull or push away from each other will determine how far
above and below 0 the wave fluctuates. The greater the y-value the greater the amplitude
of our wave. The greater the compressions and rarefactions the greater the amplitude.

TRANSDUCTION

The analogue sound waves we hear in the world around us need to be converted into an
electrical signal in order to be amplified or sent to a soundcard for recording. The process of
converting acoustical energy in the form of pressure waves into an electrical signal is carried out
by a device known as a a transducer.

A transducer, which is usually found in microphones, produces a changing electrical voltage that
mirrors the changing compression and rarefaction of the air molecules caused by the sound
wave. The continuous variation of pressure is therefore 'transduced' into continuous variation of
voltage. The greater the variation of pressure the greater the variation of voltage that is sent to
the computer.

Ideally, the transduction process should be as transparent and clean as possible: i.e., whatever
goes in comes out as a perfect voltage representation. In the real world however this is never
the case. Noise and distortion are always incorporated into the signal. Every time sound passes
through a transducer or is transmitted electrically a change in signal quality will result. When we
talk of 'noise' we are talking specifically about any unwanted signal captured during the
transduction process. This normally manifests itself as an unwanted 'hiss'".

SAMPLING

The analogue voltage that corresponds to an acoustic signal changes continuously so that at
each instant in time it will have a different value. It is not possible for a computer to receive the
value of the voltage for every instant because of the physical limitations of both the computer
and the data converters (remember also that there are an infinite number of instances between
every two instances!).

What the soundcard can do however is to measure the power of the analogue voltage at
intervals of equal duration. This is how all digital recording works and is known as 'sampling’. The
result of this sampling process is a discrete or digital signal which is no more than a sequence of
numbers corresponding to the voltage at each successive sample time.

Below left is a diagram showing a sinusoidal waveform. The vertical lines that run through the
diagram represents the points in time when a snapshot is taken of the signal. After the sampling
has taken place we are left with what is known as a discrete signal consisting of a collection of
audio samples, as illustrated in the diagram on the right hand side below. If one is recording using
a typical audio editor the incoming samples will be stored in the computer RAM (Random Access
Memory). In Csound one can process the incoming audio samples in real time and output a new
stream of samples, or write them to disk in the form of a sound file.

It is important to remember that each sample represents the amount of voltage, positive or
negative, that was present in the signal at the point in time the sample or snapshot was taken.

The same principle applies to recording of live video. A video camera takes a sequence of
pictures of something in motion for example. Most video cameras will take between 30 and 60
still pictures a second. Each picture is called a frame. When these frames are played we no
longer perceive them as individual pictures. We perceive them instead as a continuous moving
image.



ANALOGUE VERSUS DIGITAL

In general, analogue systems can be quite unreliable when it comes to noise and distortion. Each
time something is copied or transmitted, some noise and distortion is introduced into the
process. If this is done many times, the cumulative effect can deteriorate a signal quite
considerably. It is because of this, the music industry has turned to digital technology, which so
far offers the best solution to this problem. As we saw above, in digital systems sound is stored
as numbers, so a signal can be effectively "cloned". Mathematical routines can be applied to
prevent errors in transmission, which could otherwise introduce noise into the signal.

SAMPLE RATE AND THE SAMPLING THEOREM

The sample rate describes the number of samples (pictures/snapshots) taken each second. To
sample an audio signal correctly it is important to pay attention to the sampling theorem:

"To represent digitally a signal containing frequencies up to X Hz, it is
necessary to use a sampling rate of at least 2X samples per second"”

According to this theorem, a soundcard or any other digital recording device will not be able to
represent any frequency above 1/2 the sampling rate. Half the sampling rate is also referred to
as the Nyquist frequency, after the Swedish physicist Harry Nyquist who formalized the theory
in the 1920s. What it all means is that any signal with frequencies above the Nyquist frequency
will be misrepresented. Furthermore it will result in a frequency lower than the one being
sampled. When this happens it results in what is known as aliasing or foldover.

ALIASING

Here is a graphical representation of aliasing.
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The sinusoidal wave form in blue is being sampled at each arrow. The line that joins the red
circles together is the captured waveform. As you can see the captured wave form and the
original waveform have different frequencies. Here is another example:
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We can see that if the sample rate is 40,000 there is no problem sampling a signal that is
10KHz. On the other hand, in the second example it can be seen that a 30kHz waveform is not
going to be correctly sampled. In fact we end up with a waveform that is 10kHz, rather than
30kHz.

The following Csound instrument plays a 1000 Hz tone first directly, and then because the
frequency is 1000 Hz lower than the sample rate of 44100 Hz:



EXAMPLE 01A01.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1

asig oscils .2, p4, ©
outs asig, asig

endin

</CsInstruments>

<CsScore>

i1 0 2 1000 ;1000 Hz tone

i1 3 2 43100 ;43100 Hz tone sounds like 1000 Hz because of aliasing
</CsScore>

</CsoundSynthesizer>

The same phenomenon takes places in fim and video too. You may recall having seen wagon
wheels apparently move backwards in old Westerns. Let us say for example that a camera is
taking 60 frames per second of a wheel moving. If the wheel is completing one rotation in
exactly 1/60th of a second, then every picture looks the same. - as a result the wheel appears
to stand still. If the wheel speeds up, i.e., increases frequency, it will appear as if the wheel is
slowly turning backwards. This is because the wheel will complete more than a full rotation
between each snapshot. This is the most ugly side-effect of aliasing - wrong information.

As an aside, it is worth observing that a lot of modern 'glitch' music intentionally makes a
feature of the spectral distortion that aliasing induces in digital audio.

Audio-CD Quality uses a sample rate of 44100Kz (44.1 kHz). This means that CD quality can only
represent frequencies up to 22050Hz. Humans typically have an absolute upper limit of hearing
of about 20Khz thus making 44.1KHz a reasonable standard sampling rate.

BITS, BYTES AND WORDS. UNDERSTANDING BINARY.

All digital computers represent data as a collection of bits (short for binary digit). A bit is the
smallest possible unit of information. One bit can only be one of two states - off or on, 0 or 1.
The meaning of the bit, which can represent almost anything, is unimportant at this point. The
thing to remember is that all computer data - a text file on disk, a program in memory, a packet
on a network - is ultimately a collection of bits.

Bits in groups of eight are called bytes, and one byte usually represents a single character of
data in the computer. It's a little used term, but you might be interested in knowing that a nibble
is half a byte (usually 4 bits).

THE BINARY SYSTEM

All digital computers work in a environment that has only two variables, 0 and 1. All numbers in
our decimal system therefore must be translated into O's and 1's in the binary system. If you
think of

binary numbers in terms of switches. With one switch you can represent up to two different
numbers.

0 (OFF) = Decimal 0
1 (ON) = Decimal 1

Thus, a single bit represents 2 numbers, two bits can represent 4 numbers, three bits represent
8 numbers, four bits represent 16 numbers, and so on up to a byte, or eight bits, which
represents 256 numbers. Therefore each added bit doubles the amount of possible numbers
that can be represented. Put simply, the more bits you have at your disposal the more
information you can store.



BIT-DEPTH RESOLUTION

Apart from the sample rate, another important parameter which can affect the fidelity of a
digital signal is the accuracy with which each sample is known, in other words knowing how
strong each voltage is. Every sample obtained is set to a specific amplitude (the measure of
strength for each voltage) level. The number of levels depends on the precision of the
measurement in bits, i.e., how many binary digits are used to store the samples. The number of
bits that a system can use is normally referred to as the bit-depth resolution.

If the bit-depth resolution is 3 then there are 8 possible levels of amplitude that we can use for
each sample. We can see this in the diagram below. At each sampling period the soundcard plots
an amplitude. As we are only using a 3-bit system the resolution is not good enough to plot the
correct amplitude of each sample. We can see in the diagram that some vertical lines stop
above or below the real signal. This is because our bit-depth is not high enough to plot the
amplitude levels with sufficient accuracy at each sampling period.
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example here for 4, 6, 8, 12, 16 bit of a sine signal ...
. coming in the next release

The standard resolution for CDs is 16 bit, which allows for 65536 different possible amplitude
levels, 32767 either side of the zero axis. Using bit rates lower than 16 is not a good idea as it
will result in noise being added to the signal. This is referred to as quantization noise and is a
result of amplitude values being excessively rounded up or down when being digitized.
Quantization noise becomes most apparent when trying to represent low amplitude (quiet)
sounds. Frequently a tiny amount of noise, known as a dither signal, will be added to digital audio
before conversion back into an analogue signal. Adding this dither signal will actually reduce the
more noticeable noise created by quantization. As higher bit depth resolutions are employed in
the digitizing process the need for dithering is reduced. A general rule is to use the highest bit
rate available.

Many electronic musicians make use of deliberately low bit depth quantization in order to add
noise to a signal. The effect is commonly known as 'bit-crunching' and is relatively easy to do in
Csound.

ADC / DAC

The entire process, as described above, of taking an analogue signal and converting it into a
digital signal is referred to as analogue to digital conversion or ADC. Of course digital to analogue
conversion, DAC, is also possible. This is how we get to hear our music through our PC's
headphones or speakers. For example, if one plays a sound from Media Player or iTunes the
software will send a series of numbers to the computer soundcard. In fact it will most likely send
44100 numbers a second. If the audio that is playing is 16 bit then these numbers will range from
-32768 to +32767.

When the sound card receives these numbers from the audio stream it will output corresponding
voltages to a loudspeaker. When the voltages reach the loudspeaker they cause the
loudspeakers magnet to move inwards and outwards. This causes a disturbance in the air around
the speaker resulting in what we perceive as sound.



6 . FREQUENCIES

As mentioned in the previous section frequency is defined as the number of cycles or periods
per second. Frequency is measured in Hertz. If a tone has a frequency of 440Hz it completes
440 cycles every second. Given a tone's frequency, one can easily calculate the period of any
sound. Mathematically, the period is the reciprocal of the frequency and vice versa. In equation
form, this is expressed as follows.

Frequency = 1/Period Period = 1/Frequency

Therefore the frequency is the inverse of the period, so a wave of 100 Hz frequency has a
period of 1/100 or 0.01 seconds, likewise a frequency of 256Hz has a period of 1/256, or 0.004
seconds. To calculate the wavelength of a sound in any given medium we can use the following
equation:

A = Velocity/Frequency

For instance, a wave of 1000 Hz in air (velocity of diffusion about 340 m/s) has a length of
approximately 340/1000 m = 34 cm.

LOWER AND HIGHER BORDERS FOR HEARING

The human ear can generally hear sounds in the range 20 Hz to 20,000 Hz (20 kHz). This upper
limit tends to decrease with age due to a condition known as presbyacusis, or age related
hearing loss. Most adults can hear to about 16 kHz while most children can hear beyond this. At
the lower end of the spectrum the human ear does not respond to frequencies below 20 Hz,
with 40 of 50 Hz being the lowest most people can perceive.

So, in the following example, you will not hear the first (10 Hz) tone, and probably not the last (20
kHz) one, but hopefully the other ones (100 Hz, 1000 Hz, 10000 Hz):

EXAMPLE 01B01.csd

<CsoundSynthesizer>
<CsOptions>

-odac -mo

</CsOptions>
<CsInstruments>

;example by joachim heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1

prints "Playing %d Hertz!\n", p4
asig oscils .2, p4, ©

outs asig, asig
endin

</CsInstruments>
<CsScore>

i.
i . + . 1000

i . + . 10000

i . + . 20000
</CsScore>
</CsoundSynthesizer>

LOGARITHMS, FREQUENCY RATIOS AND INTERVALS

A lot of basic maths is about simplification of complex equations. Shortcuts are taken all the
time to make things easier to read and equate. Multiplication can be seen as a shorthand of
addition, for example, 5x10 = 5+5+5+5+5+5+5+5+5+5. Exponents are shorthand for
multiplication, 3% = 3x3x3x3x3. Logarithms are shorthand for exponents and are used in many
areas of science and engineering in which quantities vary over a large range. Examples of
logarithmic scales include the decibel scale, the Richter scale for measuring earthquake



magnitudes and the astronomical scale of stellar brightnesses. Musical frequencies also work on
a logarithmic scale, more on this later.

Intervals in music describe the distance between two notes. When dealing with standard musical
notation it is easy to determine an interval between two adjacent notes. For example a perfect
5th is always made up of 7 semitones. When dealing with Hz values things are different. A
difference of say 100Hz does not always equate to the same musical interval. This is because
musical intervals as we hear them are represented in Hz as frequency ratios. An octave for
example is always 2:1. That is to say every time you double a Hz value you will jump up by a
musical interval of an octave.

Consider the following. A flute can play the note A at 440 Hz. If the player plays another A an
octave above it at 880 Hz the difference in Hz is 440. Now consider the piccolo, the highest
pitched instrument of the orchestra. It can play a frequency of 2000 Hz but it can also play an
octave above this at 4000 Hz (2 x 2000 Hz). While the difference in Hertz between the two
notes on the flute is only 440 Hz, the difference between the two high pitched notes on a piccolo
is 1000 Hz yet they are both only playing notes one octave apart.

What all this demonstrates is that the higher two pitches become the greater the difference in
Hertz needs to be for us to recognize the difference as the same musical interval. The most
common ratios found in the equal temperament scale are the unison: (I:1), the octave: (2:1), the
perfect fifth (3:2), the perfect fourth (4:3), the major third (5:4) and the minor third (6:5).

The following example shows the difference between adding a certain frequency and applying a
ratio. First, the frequencies of 100, 400 and 800 Hz all get an addition of 100 Hz. This sounds
very different, though the added frequency is the same. Second, the ratio 3/2 (perfect fifth) is
applied to the same frequencies. This sounds always the same, though the frequency
displacement is different each time.

EXAMPLE 01B02.csd

<CsoundSynthesizer>
<CsOptions>

-odac -mo@

</CsOptions>
<CsInstruments>

;example by joachim heintz
sSr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1

prints "Playing %d Hertz!\n", p4
asig oscils .2, p4, O

outs asig, asig
endin

instr 2

prints "Adding %d Hertz to %d Hertz!\n", p5, p4
asig oscils .2, p4+p5, ©

outs asig, asig
endin

instr 3
prints "Applying the ratio of %f (adding %d Hertz)
to %d Hertz!\n", p5, p4*p5, p4
asig oscils .2, p4*p5, ©

outs asig, asig
endin
</CsInstruments>
<CsScore>
;adding a certain frequency (instr 2)
i101100
i211 100 100
i1 31 400
i2 41 400 100
il16 1800
i27 1800 100
;applying a certain ratio (instr 3)
i1 10 1 100
i 3111 100 [3/2]
i1 13 1 400
i 3 14 1 400 [3/2]
i1 16 1 800
i 317 1 800 [3/2]



</CsScore>
</CsoundSynthesizer>

So what of the algorithms mentioned above. As some readers will know the current preferred
method of tuning western instruments is based on equal temperament. Essentially this means
that all octaves are split into 12 equal intervals. Therefore a semitone has a ratio of 20M2) which
is approximately 1.059463.

So what about the reference to logarithms in the heading above? As stated previously,

logarithms are shorthand for exponents. 20/12- 1.059463 can also be written as log2(1.059463)=
1/12. Therefore musical frequency works on a logarithmic scale.

MIDI NOTES

Csound can easily deal with MIDI notes and comes with functions that will convert MIDI notes to
Hertz values and back again. In MIDI speak A440 is equal to A4. You can think of A4 as being the
fourth A from the lowest A we can hear, well almost hear.

Caution: like many 'standards’ there is occasional disagreement about the mapping between
frequency and octave number. You may occasionally encounter A440 being described as A3.



7. INTENSITIES

REAL WORLD INTENSITIES AND AMPLITUDES

There are many ways to describe a sound physically. One of the most common is the Sound
Intensity Level (SIL). It describes the amount of power on a certain surface, so its unit is Watt
per square meter ( ¥ /m2 ). The range of human hearing is about 10—1214" /m?' at the
threshold of hearing to 100w /mg at the threshold of pain. For ordering this immense range,
and to facilitate the measurement of one sound intensity based upon its ratio with another, a
logarithmic scale is used. The unit Bel describes the relation of one intensity | to a reference
intensity 10 as follows:

loglol-iD Sound Intensity Level in Bel

If, for instance, the ratio Iig is 10, this is 1 Bel. If the ratio is 100, this is 2 Bel.

For real world sounds, it makes sense to set the reference value Iy to the threshold of
hearing which has been fixed as 0—L2wr /mQ at 1000 Hertz. So the range of hearing covers
about 12 Bel. Usually 1 Bel is divided into 10 deci Bel, so the common formula for measuring a
sound intensity is:

IO-IOngLD Sound Intensity Level (SIL) in Decibel (dB) with Fg= 10—12w /m2

While the sound intensity level is useful to describe the way in which the human hearing works,
the measurement of sound is more closely related to the sound pressure deviations. Sound
waves compress and expand the air particles and by this they increase and decrease the
localized air pressure. These deviations are measured and transformed by a microphone. So the
question arises: what is the relationship between the sound pressure deviations and the sound
intensity? The answer is: sound intensity changes I are proportional to the square of the sound
pressure changes P . As a formula:

I~ P2 Relation between Sound Intensity and Sound Pressure

Let us take an example to see what this means. The sound pressure at the threshold of hearing
can be fixed at 5.]0—5pg . This value is the reference value of the Sound Pressure Level
(SPL). If we have now a value of 2.10—%pPg . the corresponding sound intensity relation can
be calculated as:

2
And
(%) =102 =100

So, a factor of 10 at the pressure relation yields a factor of 100 at the intensity relation. In
general, the dB scale for the pressure P related to the pressure PO is:

2
F F F
10'10810(13‘_9) = 2-10-loglop—D = 20'1031013_0

Sound Pressure Level (SPL) in Decibel (dB) with Py= 2.10—5 Pg

Working with Digital Audio basically means working with amplitudes. What we are dealing with
microphones are amplitudes. Any audio file is a sequence of amplitudes. What you generate in
Csound and write either to the DAC in realtime or to a sound file, are again nothing but a
sequence of amplitudes. As amplitudes are directly related to the sound pressure deviations, all
the relations between sound intensity and sound pressure can be transferred to relations



between sound intensity and amplitudes:

I~ A2 Relation between Intensity and Ampltitudes

20'10810:’-%0 Decibel (dB) Scale of Amplitudes with any amplitude A related to an other
amplitude A

If you drive an oscillator with the amplitude 1, and another oscillator with the amplitude 0.5, and
you want to know the difference in dB, you calculate:

20-10g1001? = 20-10g102 = 20-0.30103 = 6.0206d B

So, the most useful thing to keep in mind is: when you double the amplitude, you get +6 dB;
when you have half of the amplitude as before, you get -6 dB.

WHAT IS 0 DB?

As described in the last section, any dB scale - for intensities, pressures or amplitudes - is just a
way to describe a relationship. To have any sort of quantitative measurement you will need to
know the reference value referred to as "0 dB". For real world sounds, it makes sense to set
this level to the threshold of hearing. This is done, as we saw, by setting the SIL to

10~12W /m2 and the SPL to 2.10—5 Py,

But for working with digital sound in the computer, this does not make any sense. What you will
hear from the sound you produce in the computer, just depends on the amplification, the
speakers, and so on. It has nothing, per se, to do with the level in your audio editor or in Csound.
Nevertheless, there is a rational reference level for the amplitudes. In a digital system, there is a
strict limit for the maximum number you can store as amplitude. This maximum possible level is
called O dB.

Each program connects this maximum possible amplitude with a number. Usually it is 'I" which is
a good choice, because you know that everything above 1 is clipping, and you have a handy
relation for lower values. But actually this value is nothing but a setting, and in Csound you are
free to set it to any value you like via the 0dbfs opcode. Usually you should use this statement
in the orchestra header:

0dbfs = 1

This means: "Set the level for zero dB as full scale to 1 as reference value." Note that because
of historical reasons the default value in Csound is not 1 but 32768. So you must have this 0dbfs
= | statement in your header if you want to set Csound to the value probably all other audio
applications have.

DB SCALE VERSUS LINEAR AMPLITUDE

Let's see some practical consequences now of what we have discussed so far. One major point
is: for getting smooth transitions between intensity levels you must not use a simple linear
transition of the amplitudes, but a linear transition of the dB equivalent. The following example
shows a linear rise of the amplitudes from O to 1, and then a linear rise of the dB's from -80 to
0 dB, both over 10 seconds.

EXAMPLE 01C01.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;example by joachim heintz



sr = 44100

ksmps = 32
nchnls = 2
0dbfs = 1
instr 1 ;linear amplitude rise
kamp line 0, p3, 1 ;amp rise 0->1
asig oscils 1, 1000, O ;1000 Hz sine
aout = asig * kamp
outs aout, aout
endin

instr 2 ;linear rise of dB

kdb line -80, p3, 0 ;dB rise -60 -> 0
asig oscils 1, 1000, 0 ;1000 Hz sine
kamp = ampdb(kdb) ;transformation db -> amp
aout = asig * kamp
outs aout, aout
endin
</CsInstruments>
<CsScore>
i10e 10
i2 11 10
</CsScore>

</CsoundSynthesizer>

You will hear how fast the sound intensity increases at the first note with direct amplitude rise,
and then stays nearly constant. At the second note you should hear a very smooth and
constant increment of intensity.

RMS MEASUREMENT

Sound intensity depends on many factors. One of the most important is the effective mean of
the amplitudes in a certain time span. This is called the Root Mean Square (RMS) value. To
calculate it, you have (1) to calculate the squared amplitudes of number N samples. Then you (2)
divide the result by N to calculate the mean of it. Finally (3) take the square root.

Let's see a simple example, and then have a look how getting the rms value works in Csound.
Assumeing we have a sine wave which consists of 16 samples, we get these amplitudes:

000 0383 0707 0924 -1000 0924 0707 0383
0
0000 0383 0707 0924 1000 0924 0707 0383

05 -

These are the squared amplitudes:

05 -

0

0000 0146 0500 0854 1000 0854 0500 0146 0000 0146 0500 0854 1000 0854 0500 0.146

The mean of these values is:



(0+0.146+0.5+0.854+1+0.854+0.5+0.146+0+0.146+0.5+0.854+1+0.854+0.5+0.146)/16=8/16=0.5
And the resulting RMS value is 0.5=0.707 .

The rms opcode in Csound calculates the RMS power in a certain time span, and smoothes the
values in time according to the ihp parameter: the higher this value (the default is 10 Hz), the
snappier the measurement, and vice versa. This opcode can be used to implement a self-
regulating system, in which the rms opcode prevents the system from exploding. Each time the

rms value exceeds a certain value, the amount of feedback is reduced. This is an example! :

EXAMPLE 01C02.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by Martin Neukom, adapted by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giSine ftgen 0, 0, 27n10, 10, 1 ;table with a sine wave
instr 1
a3 init [¢]
kamp linseg 0, 1.5, 0.2, 1.5, 0 ;envelope for initial input
asnd poscil kamp, 440, giSine ;initial input

if p4 == 1 then ;choose between two sines
adell poscil 0.0523, 0.023, giSine
adel?2 poscil 0.073, 0.023, giSine, .5

else ;or a random movement for the delay lines
adell randi 0.05, 0.1, 2
adel2 randi 0.08, 0.2, 2

endif
a0 delayr 1 ;delay line of 1 second
al deltapi adell + 0.1 ;first reading
a2 deltapi adel2 + 0.1 ;second reading
krms rms a3 ;rms measurement

delayw asnd + exp(-krms) * a3 ;feedback depending on rms
a3 reson -(al+a2), 3000, 7000, 2 ;calculate a3
aout linen al/3, 1, p3, 1 ;apply fade in and fade out
outs aout, aout

endin
</CsInstruments>
<CsScore>

i10 60 1 ;two sine movements of delay with feedback
i161 . 2 ;two random movements of delay with feedback
</CsScore>

</CsoundSynthesizer>

FLETCHER-MUNSON CURVES

Human hearing is roughly in a range between 20 and 20000 Hz. But inside this range, the hearing
is not equally sensitive. The most sensitive region is around 3000 Hz. If you come to the upper
or lower border of the range, you need more intensity to perceive a sound as "equally loud".

These curves of equal loudness are mostly called "Fletcher-Munson Curves" because of the
paper of H. Fletcher and W. A. Munson in 1933. They look like this:
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Try the following test. In the first 5 seconds you will hear a tone of 3000 Hz. Adjust the level of
your amplifier to the lowest possible point at which you still can hear the tone. - Then you hear
a tone whose frequency starts at 20 Hertz and ends at 20000 Hertz, over 20 seconds. Try to
move the fader or knob of your amplification exactly in a way that you still can hear anything,
but as soft as possible. The movement of your fader should roughly be similar to the lowest
Fletcher-Munson-Curve: starting relatively high, going down and down until 3000 Hertz, and then
up again. (As always, this test depends on your speaker hardware. If your speaker do not
provide proper lower frequencies, you will not hear anything in the bass region.)

EXAMPLE 01C03.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 27n10, 10, 1 ;table with a sine wave

instr 1

kfreq expseg p4, p3, p5
printk 1, kfreq ;prints the frequencies once a second

asin poscil .2, kfreq, giSine

aout linen asin, .01, p3, .01
outs aout, aout

endin

</CsInstruments>

<CsScore>

i 10 5 1000 1000

il16 20 20 20000

</CsScore>

</CsoundSynthesizer>

It is very important to bear in mind that the perceived loudness depends much on the
frequencies. You must know that putting out a sine of 30 Hz with a certain amplitude is totally
different from a sine of 3000 Hz with the same amplitude - the latter will sound much louder.

1. cf Martin Neukom, Signale Systeme Klangsynthese, Ziirich 2003, p. 383%
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8. MAKE CSOUND RUN

CSOUND AND FRONTENDS

The core element of Csound is an audio engine for the Csound language. It has no graphical
elements and it is designed to take Csound text files (like ".csd" files) and produce audio, either in
realtime, or by writing to a file. It can still be used in this way, but most users nowadays prefer
to use Csound via a frontend. A frontend is an application which assists you in writing code and
running Csound. Beyond the functions of a simple text editor, a frontend environment will offer
colour coded highlighting of language specific keywords and quick access to an integrated help
system. A frontend can also expand possibilities by providing tools to build interactive interfaces
as well, sometimes, as advanced compositional tools.

In 2009 the Csound developers decided to include QuteCsound as the standard frontend to be
included with the Csound distribution, so you will already have this frontend if you have installed
any of the recent pre-built versions of Csound. Conversely if you install a frontend you will
require a separate installation of Csound in order for it to function. If you experience any
problems with QuteCsound, or simply prefer another frontend design, try WinXound as
alternative.

HOW TO DOWNLOAD AND INSTALL CSOUND

To get Csound you first need to download the package for your system from the SourceForge
page: http://sourceforge.net/projects/csound/files/csound5,

There are many files here, so here are some guidelines to help you choose the appropriate
version.

Windows

Windows installers are the ones ending in .exe. Look for the latest version of Csound, and find a
file which should be called something like: Csound5.17-gnu-win32-d.exe. The important thing to
note is the final letter of the installer name, which can be "d" or "f". This specifies the
computation precision of the Csound engine. Float precision (32-bit float) is marked with "f* and
double precision (64-bit float) is marked "d". This is important to bear in mind, as a frontend
which works with the "floats" version, will not run if you have the "doubles" version installed.
More recent versions of the pre-built Windows installer have only been released in the 'doubles’
version.

After you have downloaded the installer, just run it and follow the instructions. When you are
finished, you will find a Csound folder in your start menu containing Csound utilities and the
CsoundQt (QuteCsound) frontend.

Mac OS X

The Mac OS X installers are the files ending in .dmg. Look for the latest version of Csound for
your particular system, for example a Universal binary for 10.7 will be called something like:
csound>5.17.3-05X10.7-Universal.dmg. When you double click the downloaded file, you will have a
disk image on your desktop, with the Csound installer, CsoundQt and a readme file. Double-click
the installer and follow the instructions. Csound and the basic Csound utilities will be installed. To
install the CsoundQt frontend, you only need to move it to your Applications folder.

Linux and others

Csound is available from the official package repositories for many distributions like Debian,
Ubuntu, Fedora, Archlinux and Gentoo. If there are no binary packages for your platform, or you
need a more recent version, you can get the source package from the SourceForge page and
build from source. Some build instructions can be find in the chapter BUILDING CSOUND in the
appendix, and in the Csound Wiki on Sourceforge. Detailed information can also be found in the

Building Csound Manual Page.



Note that the Csound repository has moved from cvs to git. After installing git, you can use this
command to clone the Csound5 repository, if you like to have access to the latest (perhaps
unstable) sources:

git clone git://csound.git.sourceforge.net/gitroot/csound/csound5

Android and iOS

Recently Csound has been ported to Android and iOS. At the time of writing this release, it is too
early for a description. If you are interested, you may have a look at

tp://sourceforge.net/projects/csound/files/csound5 or at the paper from Victor Lazzarini and
Steven Yi at the 2012 Linux Audio Conference.

INSTALL PROBLEMS?

If, for any reason, you can't find the CsoundQt (formerly QuteCsound) frontend on your system
after install, or if you want to install the most recent version of CsoundQt, or if you prefer
another frontend altogether: see the CSOUND FRONTENDS section of this manual for further
information. If you have any install problems, consider joining the Csound Mailing List to report
your issues, or write a mail to one of the maintainers (see ON THIS RELEASE).

THE CSOUND REFERENCE MANUAL

The Csound Reference Manual is an indispensable companion to Csound. It is available in various
formats from the same place as the Csound installers, and it is installed with the packages for
0OS X and Windows. It can also be browsed online at The Csound Manual Section at Csounds.com.
Many frontends will provide you with direct and easy access to it.

HOW TO EXECUTE A SIMPLE EXAMPLE

Using CsoundQt

Run CsoundQt. Go into the CsoundQt menubar and choose: Examples->Getting started...->
Basics-> HelloWorld

You will see a very basic Csound file (.csd) with a lot of comments in green.

Click on the "RUN" icon in the CsoundQt control bar to start the realtime Csound engine. You
should hear a 440 Hz sine wave.

You can also run the Csound engine in the terminal from within QuteCsound. Just click on "Run in
Term". A console will pop up and Csound will be executed as an independent process. The result
should be the same - the 440 Hz "beep".

Using the Terminal / Console

1. Save the following code in any plain text editor as HelloWorld.csd.

EXAMPLE 02A01.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>

<CsInstruments>

;Example by Alex Hofmann

instr 1

aSin oscils 0dbfs/4, 440, 0
out asSin

endin

</CsInstruments>

<CsScore>

i101

</CsScore>

</CsoundSynthesizer>

2. Open the Terminal / Prompt / Console



3. Type: csound /full/path/HelloWorld.csd

where /full/path/HelloWorld.csd is the complete path to your file. You also execute this file by
just typing csound then dragging the file into the terminal window and then hitting return.

You should hear a 440 Hz tone.



9 . CSOUND SYNTAX

ORCHESTRA AND SCORE

In Csound, you must define "instruments", which are units which "do things", for instance playing
a sine wave. These instruments must be called or "turned on" by a "score". The Csound "score"

is a list of events which describe how the instruments are to be played in time. It can be thought
of as a timeline in text.

A Csound instrument is contained within an Instrument Block, which starts with the keyword
instr and ends with the keyword endin. All instruments are given a number (or a name) to
identify them.

instr 1
instrument instructions come here...
endin

Score events in Csound are individual text lines, which can turn on instruments for a certain
time. For example, to turn on instrument 1, at time 0, for 2 seconds you will use:

i102
THE CSOUND DOCUMENT STRUCTURE

A Csound document is structured into three main sections:

e CsOptions: Contains the configuration options for Csound. For example using "-o dac" in
this section will make Csound run in real-time instead of writing a sound file.

e Csinstruments: Contains the instrument definitions and optionally some global settings
and definitions like sample rate, etc.

e CsScore: Contains the score events which trigger the instruments.

Each of these sections is opened with a <xyz> tag and closed with a </xyz> tag. Every Csound
file starts with the <CsoundSynthesizer> tag, and ends with </CsoundSynthesizer>. Only the text
in-between will be used by Csound.

EXAMPLE 02B01.csd
<CsoundSynthesizer>; START OF A CSOUND FILE
<CsOptions> ; CSOUND CONFIGURATION
-odac
</CsOptions>

<CsInstruments> ; INSTRUMENT DEFINITIONS GO HERE

; Set the audio sample rate to 44100 Hz

sr = 44100

instr 1

; a 440 Hz Sine Wave

asin oscils 0dbfs/4, 440, 0
out asSin

endin

</CsInstruments>

<CsScore> ; SCORE EVENTS GO HERE
i101
</CsScore>

</CsoundSynthesizer> ; END OF THE CSOUND FILE
; Anything after is ignored by Csound

Comments, which are lines of text that Csound will ignore, are started with the ";" character.
Multi-line comments can be made by encasing them between "/*" and "*/".

OPCODES

"Opcodes" or "Unit generators" are the basic building blocks of Csound. Opcodes can do many



things like produce oscillating signals, filter signals, perform mathematical functions or even turn
on and off instruments. Opcodes, depending on their function, will take inputs and outputs. Each
input or output is called, in programming terms, an "argument”. Opcodes always take input
arguments on the right and output their results on the left, like this:

output OPCODE inputl, input2, input3, .., inputN

For example the oscils opcode has three inputs: amplitude, frequency and phase, and produces a
sine wave signal:

asin oscils 0dbfs/4, 440, 0

In this case, a 440 Hertz oscillation starting at phase O radians, with an amplitude of 0dbfs/4 (a
quarter of O dB as full scale) will be created and its output will be stored in a container called
aSin. The order of the arguments is important: the first input to oscils will always be amplitude,
the second, frequency and the third, phase.

Many opcodes include optional input arguments and occasionally optional output arguments.
These will always be placed after the essential arguments. In the Csound Manual documentation
they are indicated using square brackets "[]". If optional input arguments are omitted they are
replaced with the default values indicated in the Csound Manual. The addition of optional output
arguments normally initiates a different mode of that opcode: for example, a stereo as opposed
to mono version of the opcode.

VARIABLES

A "variable" is a named container. It is a place to store things like signals or values from where
they can be recalled by using their name. In Csound there are various types of variables. The
easiest way to deal with variables when getting to know Csound is to imagine them as cables.

If you want to patch this together: Oscillator->Filter->Output,

you need two cables, one going out from the oscillator into the filter and one from the filter to
the output. The cables carry audio signals, which are variables beginning with the letter "a".

aSource buzz 0.8, 200, 10, 1
aFiltered moogladder aSource, 400, 0.8
out aFiltered

In the example above, the buzz opcode produces a complex waveform as signal aSource. This
signal is fed into the moogladder opcode, which in turn produces the signal aFiltered. The out
opcode takes this signal, and sends it to the output whether that be to the speakers or to a
rendered file.

Other common variable types are "k" variables which store control signals, which are updated
less frequently than audio signals, and "i* variables which are constants within each instrument
note.

You can find more information about variable types here in this manual, or here in the Csound
Journal.

USING THE MANUAL

The Csound Reference Manual is a comprehensive source regarding Csound's syntax and
opcodes. All opcodes have their own manual entry describing their syntax and behavior, and the
manual contains a detailed reference on the Csound language and options.

In CsoundQt you can find the Csound Manual in the Help Menu. You can quickly go to a particular
opcode entry in the manual by putting the cursor on the opcode and pressing Shift+F1.
WinXsound and Blue also provide easy access to the manual.



1 O . CONFIGURING MIDI

Csound can receive MIDI events (like MIDI notes and MIDI control changes) from an external MIDI
interface or from another program via a virtual MIDI cable. This information can be used to
control any aspect of synthesis or performance.

Csound receives MIDI data through MIDI Realtime Modules. These are special Csound plugins
which enable MIDI input using different methods according to platform. They are enabled using
the -+rtmidi command line flag in the <CsOptions> section of your .csd file, but can also be set
interactively on some front-ends via the configure dialog setups.

There is the universal "portmidi" module. PortMidi is a cross-platform module for MIDI I/O and
should be available on all platforms. To enable the "portmidi" module, you can use the flag:

-+rtmidi=portmidi

After selecting the RT MIDI module from a front-end or the command line, you need to select
the MIDI devices for input and output. These are set using the flags -M and -Q respectively
followed by the number of the interface. You can usually use:

-M999
To get a performance error with a listing of available interfaces.

For the PortMidi module (and others like ALSA), you can specify no number to use the default
MIDI interface or the 'a' character to use all devices. This will even work when no MIDI devices
are present.

-Ma

So if you want MIDI input using the portmidi module, using device 2 for input and device 1 for
output, your <CsOptions> section should contain:

-+rtmidi=portmidi -M2 -Q1

There is a special "virtual" RT MIDI module which enables MIDI input from a virtual keyboard. To
enable it, you can use:

-+rtmidi=virtual -M@

PLATFORM SPECIFIC MODULES

If the "portmidi" module is not working properly for some reason, you can try other platform
specific modules.

Linux
On Linux systems, you might also have an "alsa" module to use the alsa raw MIDI interface. This

is different from the more common alsa sequencer interface and will typically require the snd-
virmidi module to be loaded.

OS X
On OS X you may have a "coremidi" module available.
Windows

On Windows, you may have a "winmme" MIDI module.

MIDI 1/O IN CSOUNDQT

As with Audio I/O, you can set the MIDI preferences in the configuration dialog. In it you will find a
selection box for the RT MIDI module, and text boxes for MIDI input and output devices.



. QuteCsound Configuration

Run || General | Widgets | Editor | Environment | External programs | Template |

Buffer Size (-b) [1024 l

HW Buffer Size (-B) | 4096 | & Dither

Additional command line flags |—old—parser
File (offline render)

Use QuteCsound options O 1gnore CsOptions

O Ask For filename every time File type ‘ WAVE |v ‘
Wi sample format ‘ 24 Bit |v ‘
O Input Filename | | E’
Output Filename [,fhome,flinux_fDesktop,ftest.wav l E

Realtime Play

Use QuteCsound options [ Ignore CsOptions

RT Audio Module ‘ alsa |w ‘ RT MIDI Module ‘ alsa | w ‘
Input device (-i) [adc ] B Input device (-M) [a ] @
output device (-0) [dac l B output device (-Q) [ l E’

Jack client name (use * for current filename) [ *

HOW TO USE A MIDI KEYBOARD

Once you've set up the hardware, you are ready to receive MIDI information and interpret it in
Csound. By default, when a MIDI note is received, it turns on the Csound instrument
corresponding to its channel number, so if a note is received on channel 3, it will turn on
instrument 3, if it is received on channel 10, it will turn on instrument 10 and so on.

If you want to change this routing of MIDI channels to instruments, you can use the massign
opcode. For instance, this statement lets you route your MIDI channel 1 to instrument 10:

massign 1, 10

On the following example, a simple instrument, which plays a sine wave, is defined in instrument
1. There are no score note events, so no sound will be produced unless a MIDI note is received on
channel 1.

EXAMPLE 02C01.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<CsInstruments>

;Example by Andrés Cabrera

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
massign 0, 1 ;assign all MIDI channels to instrument 1
giSine ftgen 0,0,2710,10,1 ;a function table with a sine wave
instr 1
iCps cpsmidi ;get the frequency from the key pressed

iAmp ampmidi 0dbfs * 0.3 ;get the amplitude
aout poscil iAmp, iCps, giSine ;generate a sine tone



outs a0ut, aoOut ;write it to the output
endin

</CsInstruments>
<CsScore>

e 3600

</CsScore>
</CsoundSynthesizer>

Note that Csound has an unlimited polyphony in this way: each key pressed starts a new
instance of instrument 1, and you can have any number of instrument instances at the same
time.

HOW TO USE A MIDI CONTROLLER

To receive MIDI controller events, opcodes like ctrl7 can be used. In the following example
instrument 1 is turned on for 60 seconds. It will receive controller #1 (modulation wheel) on
channel 1 and convert MIDI range (0-127) to a range between 220 and 440. This value is used to
set the frequency of a simple sine oscillator.

EXAMPLE 02C02.csd
<CsoundSynthesizer>
<CsOptions>
-+rtmidi=virtual -M1 -odac
</CsOptions>
<CsInstruments>

;Example by Andrés Cabrera

sSr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

giSine ftgen 0,0,2710,10,1

instr 1
; --- receive controller number 1 on channel 1 and scale from 220 to 440
kFreq ctrl7 1, 1, 220, 440
; --- use this value as varying frequency for a sine wave
a0ut poscil 0.2, kFreq, giSine
outs alut, alut
endin
</CsInstruments>
<CsScore>
i1l10 60
e
</CsScore>
</CsoundSynthesizer>

OTHER TYPE OF MIDI DATA

Csound can receive other type of MID|, like pitch bend, and aftertouch through the usage of
specific opcodes. Generic MIDI Data can be received using the midiin opcode. The example below
prints to the console the data received via MIDI.

EXAMPLE 02C03.csd

<CsoundSynthesizer>
<CsOptions>
-+rtmidi=portmidi -Ma -odac
</CsOptions>
<CsInstruments>

;Example by Andrés Cabrera

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
kStatus, kChan, kDatal, kData2 midiin

if kStatus != 0 then ;print if any new MIDI message has been received
printk 0, kStatus
printk 0, kChan
printk 0, kDatal
printk 0, kData2



endif
endin

</CsInstruments>
<CsScore>

il 0 3600

e

</CsScore>
</CsoundSynthesizer>



1 1 - LIVE AUDIO

CONFIGURING AUDIO & TUNING AUDIO PERFORMANCE

Selecting Audio Devices and Drivers

Csound relates to the various inputs and outputs of sound devices installed on your computer as
a numbered list. If you are using a multichannel interface then each stereo pair will most likely
be assigned a different number. If you wish to send or receive audio to or from a specific audio
connection you will need to know the number by which Csound knows it. If you are not sure of
what that is you can trick Csound into providing you with a list of available devices by trying to
run Csound using an obviously out of range device number, like this:

EXAMPLE 02D01.csd

<CsoundSynthesizer>
<CsOptions>

-iadc999 -odac999
</CsOptions>
<CsInstruments>
;Example by Andrés Cabrera
instr 1

endin
</CsInstruments>
<CsScore>

e

</CsScore>
</CsoundSynthesizer>

The input and output devices will be listed seperately. Specify your input device with the -iadc
flag and the number of your input device, and your output device with the -odac flag and the
number of your output device. For instance, if you select the "XYZ" device from the list above
both, for input and output, you may include something like

-iadc2 -odac3
in the <CsOptions> section of you .csd file.

The RT (= real-time) output module can be set with the -+rtaudio flag. If you don't use this flag,
the PortAudio driver will be used. Other possible drivers are jack and alsa (Linux), mme
(Windows) or CoreAudio (Mac). So, this sets your audio driver to mme instead of Port Audio:

-+rtaudio=mme
Tuning Performance and Latency

Live performance and latency depend mainly on the sizes of the software and the hardware
buffers. They can be set in the <CsOptions> using the -B flag for the hardware buffer, and the -
b flag for the software buffer. For instance, this statement sets the hardware buffer size to 512
samples and the software buffer size to 128 sample:

-B512 -b128

The other factor which affects Csound's live performance is the ksmps value which is set in the
header of the <Cslnstruments> section. By this value, you define how many samples are
processed every Csound control cycle.

Try your realtime performance with -B512, -b128 and ksmps=32. With a software buffer of 128
samples, a hardware buffer of 512 and a sample rate of 44100 you will have around 12ms
latency, which is usable for live keyboard playing. If you have problems with either the latency or
the performance, tweak the values as described here.

CsoundQt

To define the audio hardware used for realtime performance, open the configuration dialog. In



the "Run" Tab, you can choose your audio interface, and the preferred driver. You can select
input and output devices from a list if you press the buttons to the right of the text boxes for
input and output names. Software and hardware buffer sizes can be set at the top of this
dialogue box.

Run | General Widgets Editor Environment Extemal programs Template

& Buffer Size (-b) 512

& HW Buffer Size (-B) | 2048 ) Dither
Additional command line flags

File (offline render)

M Use QuteCsound options Ignore CsOptions
Ask for filename every time File type WAVE v
Sample format | 16 Bit (short) v

Input Filename
Output Filename

Realtime Play

& Use QuteCsound options Ignore CsOptions
RT Audio Module portaudit)% v RT MIDI Module | none v
Input device (-i) _.ad.c .| Input device (-M)
output device (-0 |dac | output device (-Q)
Jack client name (use * for current filename) *
oK Cancel

CSOUND CAN PRODUCE EXTREME DYNAMIC RANGE!

Csound can produce extreme dynamic range, so keep an eye on the level you are sending to
your output. The number which describes the level of 0 dB, can be set in Csound by the Odbfs
assignment in the <Cslnstruments> header. There is no limitation, if you set Odbfs = 1 and send
a value of 32000, this can damage your ears and speakers!

USING LIVE AUDIO INPUT AND OUTPUT

To process audio from an external source (for example a microphone), use the inch opcode to
access any of the inputs of your audio input device. For the output, outch gives you all
necessary flexibility. The following example takes a live audio input and transforms its sound
using ring modulation. The Csound Console should output five times per second the input
amplitude level.

EXAMPLE 02D02.csd

<CsoundSynthesizer>

<CsOptions>

;CHANGE YOUR INPUT AND OUTPUT DEVICE NUMBER HERE IF NECESSARY!
-iadc@® -odac® -B512 -b128

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz

Sr = 44100 ;set sample rate to 44100 Hz

ksmps = 32 ;number of samples per control cycle
nchnls = 2 ;use two audio channels

0dbfs = 1 ;set maximum level as 1

giSine ftgen 0, 0, 2710, 10, 1 ;table with sine wave

instr 1

aln inch 1 ;take input from channel 1

kInLev downsamp alIn ;convert audio input to control signal
printk .2, abs(kInLev)

;make modulator frequency oscillate 200 to 1000 Hz



kModFreq poscil 400, 1/2, giSine

kModFreq = kModFreq+600
aMod poscil 1, kModFreq, giSine ;modulator signal
aRM = aIn * aMod ;ring modulation
outch 1, aRM, 2, aRM ;output to channel 1 and 2
endin
</CsInstruments>
<CsScore>
i1 0 3600
</CsScore>

</CsoundSynthesizer>

Live Audio is frequently used with live devices like widgets or MIDI. In CsoundQt, you can find
several examples in Examples -> Getting Started -> Realtime Interaction.



12 RENDERING TO FILE

WHEN TO RENDER TO FILE

Csound can also render audio straight to a sound file stored on your hard drive instead of as live
audio sent to the audio hardware. This gives you the possibility to hear the results of very
complex processes which your computer can't produce in realtime.

Csound can render to formats like wav, aiff or ogg (and other less popular ones), but not mp3
due to its patent and licencing problems.

RENDERING TO FILE

Save the following code as Render.csd:

EXAMPLE 02E01.csd

<CsoundSynthesizer>

<CsOptions>

-0 Render.wav

</CsOptions>

<CsInstruments>

;Example by Alex Hofmann

instr 1

asin oscils 0dbfs/4, 440, 0
out asSin

endin

</CsInstruments>

<CsScore>

i1e0e1

e

</CsScore>

</CsoundSynthesizer>

Open the Terminal / Prompt / Console and type:

csound /path/to/Render.csd

Now, because you changed the -o flag in the <CsOptions> from "-o dac" to "-o filename", the
audio output is no longer written in realtime to your audio device, but instead to a file. The file
will be rendered to the default directory (usually the user home directory). This file can be
opened and played in any audio player or editor, e.g. Audacity. (By default, csound is a non-
realtime program. So if no command line options are given, it will always render the csd to a file
called test.wav, and you will hear nothing in realtime.)

The -o flag can also be used to write the output file to a certain directory. Something like this
for Windows ...

<CsOptions>
-0 c:/music/samples/Render .wav
</CsOptions>

... and this for Linux or Mac OSX:

<CsOptions>
-0 /Users/JSB/organ/tatata.wav
</CsOptions>

Rendering Options

The internal rendering of audio data in Csound is done with 32-bit floating point numbers (or
even with 64-bit numbers for the "double" version). Depending on your needs, you should decide
the precision of your rendered output file:

e |f you want to render 32-bit floats, use the option flag -f.

e If you want to render 24-bit, use the flag -3.

e If you want to render 16-bit, use the flag -s (or nothing, because this is also the default in
Csound).



For making sure that the header of your soundfile will be written correctly, you should use the -
W flag for a WAV file, or the -A flag for a AIFF file. So these options will render the file
"Wow.wav" as WAV file with 24-bit accuracy:

<CsOptions>
-0 Wow.wav -W -3
</CsOptions>

Realtime and Render-To-File at the Same Time

Sometimes you may want to simultaneously have realtime output and file rendering to disk, like
recording your live performance. This can be achieved by using the fout opcode. You just have to
specify your output file name. File type and format are given by a number, for instance 18
specifies "wav 24 bit" (see the manual page for more information). The following example creates
a random frequency and panning movement of a sine wave, and writes it to the file
"live_record.wav" (in the same directory as your .csd file):

EXAMPLE 02E02.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
Sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

seed 0 ;each time different seed for random
giSine ftgen 0, 0, 27n10, 10, 1 ;a sine wave

instr 1
kFreq randomi 400, 800, 1 ;random frequency
asig poscil .2, kFreq, giSine ;sine with this frequency
kPan randomi 0, 1, 1 ;random panning
aL, aR pan2 aSig, kPan ;stereo output signal
outs aL, aR ;live output
fout "live_record.wav", 18, aL, aR ;write to soundfile
endin

</CsInstruments>
<CsScore>

i1l10e 10

e

</CsScore>
</CsoundSynthesizer>

CsoundQt

All the options which are described in this chapter can be handled very easily in CsoundQt:

e Rendering to file is simply done by clicking the "Render" button, or choosing "Control-
>Render to File" in the Menu.

e To set file-destination and file-type, you can make your own settings in "CsoundQt
Configuration" under the tab "Run -> File (offline render)". The default is a 16-Bit .wav-file.

e To record a live performance, just click the "Record" button. You will find a file with the
same name as your .csd file, and a number appended for each record task, in the same
folder as your .csd file.
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13 INITIALIZATION AND PERFORMANCE
PASS

WHAT'S THE DIFFERENCE

A Csound instrument is defined in the <Cslnstruments> section of a .csd file. An instrument
definition starts with the keyword instr (followed by a number or name to identify the
instrument), and ends with the line endin. Each instrument can be called by a score event which
starts with the character "i". For instance, this score line

i103

calls instrument 1, starting at time O, for 3 seconds. It is very important to understand that such
a call consists of two different stages: the initialization and the performance pass.

At first, Csound initializes all the variables which begin with a i or a gi. This initialization pass is
done just once.

After this, the actual performance begins. During this performance, Csound calculates all the
time-varying values in the orchestra again and again. This is called the performance pass, and
each of these calculations is called a control cycle (also abbreviated as k-cycle or k-loop). The
time for each control cycle depends on the ksmps constant in the orchestra header. If ksmps=10
(which is the default), the performance pass consists of 10 samples. If your sample rate is 44100,
with ksmps=10 you will have 4410 control cycles per second (kr=4410), and each of them has a
duration of 1/4410 = 0.000227 seconds. On each control cycle, all the variables starting with k,
gk, a and ga are updated (see the next chapter about variables for more explanations).

This is an example instrument, containing i-, k- and a-variables:

EXAMPLE 03A01.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 441

nchnls = 2
0dbfs = 1
instr 1
iAmp p4 ;amplitude taken from the 4th parameter of the score line

iFreq p5 ;frequency taken from the 5th parameter

; --- move from © to 1 in the duration of this instrument call (p3)

kPan line 0, p3, 1

aNote oscils iAmp, iFreq, © ;create an audio signal

aL, aR pan2 aNote, kPan ;let the signal move from left to right
outs aL, aR ;write it to the output

endin

</CsInstruments>

<CsScore>

i10360.2443

</CsScore>

</CsoundSynthesizer>

As ksmps=441, each control cycle is 0.01 seconds long (441/44100). So this happens when the
instrument call is performed:



Scoreline

QT4

instr 1 instr 1 instr 1 instr 1
@ue - »
G‘req = p5

kPan 1line 0, p3, 1

Note, kPan|

outs al,, "aR outs"al,, "arR
endin endin endin endin
calculation of i- 1st calculation of k- 2nd calculation of 3rd calculation of
variables and a-variables k- and a-variables k- and a-variables
Init-Pass ‘ ’ Control Cycle 1 | | Control Cycle 2 ‘ ‘ Control Cycle 3

Performance Time: | ! 1 f

0 0.01 0.02 0.03

Here is another simple example which shows the internal loop at each k-cycle. As we print out

the value at each control cycle, ksmps is very high here, so that each k-pass takes 0.1 seconds.

The init opcode can be used to set a k-variable to a certain value first (at the init-pass),
otherwise it will have the default value of zero until it is assigned something else during the first
k-cycle.

EXAMPLE 03A02.csd

<CsoundSynthesizer>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 4410

instr 1

kcount init 0; set kcount to 0 first

kcount = kcount + 1; increase at each k-pass
printk 0, kcount; print the value

endin

</CsInstruments>
<CsScore>

i101

</CsScore>
</CsoundSynthesizer>

Your output should contain the lines:

i Ttime 0.0000: 1.00000

i Ttime 0.20000: 2.00000
i Ttime 0.30000: 3.00000
i Ttime 0.40000: 4.00000
i Ttime 0.50000: 5.00000
i Ttime 0.60000: 6.00000
i Ttime 0.70000: 7.00000

i Ttime 0.80000: 8.00000
i Ttime 0.90000: 9.00000
i Ttime 1.00000: 10.00000

Try changing the ksmps value from 4410 to 44100 and to 2205 and observe the difference.
REINITIALIZATION

If you try the example above with i-variables, you will have no success, because the i-variable is
calculated just once:

EXAMPLE 03A03.csd

<CsoundSynthesizer>

sec



<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 4410

instr 1
icount init ¢} ;set icount to 0 first
icount = icount + 1 ;increase
print icount ;print the value
endin

</CsInstruments>
<CsScore>

i1e1

</CsScore>
</CsoundSynthesizer>

The printout is
instr 1: icount = 1.000

Nevertheless it is possible to refresh even an i-rate variable in Csound. This is done with the
reinit opcode. You must mark a section by a label (any name followed by a colon). Then the reinit
statement will cause the i-variable to refresh. Use rireturn to end the reinit section.

EXAMPLE 03A04.csd

<CsoundSynthesizer>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 4410

instr 1

icount init [¢] ; set icount to 0 first

new:

icount = icount + 1 ; increase
print icount ; print the value
reinit new reinit the section each k-pass
rireturn

endin

</CsInstruments>
<CsScore>

i1e0e1

</CsScore>
</CsoundSynthesizer>

This prints now:

instr 1: icount = 1.000

instr 1: icount = 2.000
instr 1: icount = 3.000
instr 1: icount = 4.000
instr 1: icount = 5.000
instr 1: icount = 6.000
instr 1: icount = 7.000

instr 1: icount = 8.000
instr 1: icount = 9.000
instr 1: icount = 10.000
instr 1: icount = 11.000

ORDER OF CALCULATION

Sometimes it is very important to observe the order in which the instruments of a Csound
orchestra are evaluated. This order is given by the instrument numbers. So, if you want to use
during the same performance pass a value in instrument 10 which is generated by another
instrument, you must not give this instrument the number 11 or higher. In the following example,
first instrument 10 uses a value of instrument 1, then a value of instrument 100.

EXAMPLE 03A05.csd

<CsoundSynthesizer>
<CsInstruments>

;Example by Joachim Heintz
Sr = 44100



ksmps = 4410

instr 1

gkcount init 0 ;set gkcount to 0 first
gkcount = gkcount + 1 ;increase
endin

instr 10
printk 0, gkcount ;print the value
endin

instr 100

gkcount init 0 ;set gkcount to 0 first
gkcount = gkcount + 1 ;increase
endin

</CsInstruments>
<CsScore>

;first i1 and i10
i101

il10 0 1

;then 1100 and i10

i 100 1 1

il1e 11
</CsScore>
</CsoundSynthesizer>

The output shows the difference:

new alloc for instr 1:

new alloc for instr 10:

i 10 time  0.10000: 1.00000
i 10 time  0.20000: 2.00000
i 10 time  0.30000: 3.00000
i 10 time  0.40000: 4.00000
i 10 time  0.50000: 5.00000
i 10 time  0.60000: 6.00000
i 10 time  0.70000:  7.00000
i 10 time  0.80000: 8.00000
10 time  0.90000:  9.00000
10 time  1.00000: 10.00000
B 0.000.. 1.000 T 1.000 TT 1.000 M: 0.0
new alloc for instr 100:

i 10 time  1.10000:  0.00000
i 10 time  1.20000: 100000
i 10 time  1.30000: 2.00000
10 time  1.50000:  4.00000
10 time  1.60000: 5.00000
10 time  1.70000:  6.00000
10 time  1.80000:  7.00000
10 time  1.90000: 8.00000
10 time  2.00000: 9.00000
B 1.000.. 2.000 T 2.000 TT 2.000 M: 0.0

ABOUT "I-TIME" AND "K-RATE" OPCODES

It is often confusing for the beginner that there are some opcodes which only work at "i-time" or
"i-rate", and others which only work at "k-rate" or "k-time". For instance, if the user wants to
print the value of any variable, he thinks: "OK - print it out." But Csound replies: "Please, tell me
first if you want to print an i- or a k-variable" (see the following section about the variable
types).

For instance, the print opcode just prints variables which are updated at each initialization pass
("i-time" or “i-rate"). If you want to print a variable which is updated at each control cycle ("k-
rate" or "k-time"), you need its counterpart printk. (As the performance pass is usually updated
some thousands times per second, you have an additional parameter in printk, telling Csound
how often you want to print out the k-values.)

So, some opcodes are just for i-rate variables, like filelen or ftgen. Others are just for k-rate
variables like metro or max_k. Many opcodes have variants for either i-rate-variables or k-rate-




variables, like printf i and printf, sprintf and sprintfk, strindex and strindexk.

Most of the Csound opcodes are able to work either at i-time or at k-time or at audio-rate, but
you have to think carefully what you need, as the behaviour will be very different if you choose
the i-, k- or a-variante of an opcode. For example, the random opcode can work at all three
rates:

ires random imin, imax : works at "i-time"
kres random kmin, kmax : works at "k-rate"
ares random kmin, kmax : works at "audio-rate"

If you use the i-rate random generator, you will get one value for each note. For instance, if you
want to have a different pitch for each note you are generating, you will use this one.

If you use the k-rate random generator, you will get one new value on every control cycle. If
your sample rate is 44100 and your ksmps=10, you will get 4410 new values per second! If you
take this as pitch value for a note, you will hear nothing but a noisy jumping. If you want to have
a moving pitch, you can use the randomi variant of the k-rate random generator, which can
reduce the number of new values per second, and interpolate between them.

If you use the a-rate random generator, you will get as many new values per second as your
sample rate is. If you use it in the range of your O dB amplitude, you produce white noise.

EXAMPLE 03A06.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

0dbfs = 1

nchnls = 2

seed 0 ;each time different seed
giSine ftgen 0, 0, 27A10, 10, 1 ;sine table

instr 1 ;i-rate random

iPch random 300, 600

aAmp linseg .5, p3, ©

aSine poscil aAmp, iPch, giSine
outs aSine, aSine

endin

instr 2 ;k-rate random: noisy

kPch random 300, 600

aAmp linseg .5, p3, 0

aSine poscil aAmp, kPch, giSine
outs aSine, aSine

endin

instr 3 ;k-rate random with interpolation: sliding pitch

kPch randomi 300, 600, 3

aAmp linseg .5, p3, ©

aSine poscil aAmp, kPch, giSine
outs aSine, aSine

endin

instr 4 ;a-rate random: white noise

aNoise random -.1, .1
outs aNoise, aNoise

endin

</CsInstruments>

<CsScore>

ii1e .5

i1 .25 .5

il1l.5 .5

i1.75 .5

i22 1

i34 2

i35 2

i36 2

i409 1

</CsScore>

</CsoundSynthesizer>



TIMELESSNESS AND TICK SIZE IN CSOUND

In a way it is confusing to speak from "i-time". For Csound, "time" actually begins with the first
performance pass. The initalization time is actually the "time zero". Regardless how much human
time or CPU time is needed for the initialization pass, the Csound clock does not move at all.
This is the reason why you can use any i-time opcode with a zero duration (p3) in the score:

EXAMPLE 03A07.csd

<CsoundSynthesizer>
<CsInstruments>

;Example by Joachim Heintz
instr 1

prints "%nHello Eternity!%n%n"
endin

</CsInstruments>

<CsScore>

i1 0 0 ;let instrument 1 play for zero seconds
</CsScore>
</CsoundSynthesizer>

Csound's clock is the control cycle. The number of samples in one control cycle - given by the
ksmps value - is the smallest possible "tick" in Csound at k-rate. If your sample rate is 44100,
and you have 4410 samples in one control cycle (ksmps=4410), you will not be able to start a k-
event faster than each 1/10 second, because there is no k-time for Csound "between" two
control cycles. Try the following example with larger and smaller ksmps values:

EXAMPLE 03A08.csd

<CsoundSynthesizer>

<CsOptions>

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 4410; try 44100 or 2205 instead

instr 1; prints the time once in each control cycle
kTimek timek
kTimes times

printks "Number of control cycles = %d%n", 0, kTimek
printks "Time = %f%n%n", 0, kTimes

endin

</CsInstruments>

<CsScore>

i10 10

</CsScore>

</CsoundSynthesizer>

Consider typical size of 32 for ksmps. When sample rate is 44100, a single tick will be less than a
millisecond. This should be sufficient for in most situations. If you need a more accurate time
resolution, just decrease the ksmps value. The cost of this smaller tick size is a smaller
computational efficiency. So your choice depends on the situation, and usually a ksmps of 32
represents a good tradeoff.

Of course the precision of writing samples (at a-rate) is in no way affected by the size of the
internal k-ticks. Samples are indeed written "in between" control cycles, because they are
vectors. So it can be necessary to use a-time variables instead of k-time variables in certain
situations. In the following example, the ksmps value is rather high (128). If you use a k-rate
variable for a fast moving envelope, you will hear a certain roughness (instrument 1) sometime
referred to as 'zipper' noise. If you use an a-rate variable instead, you will have a much cleaner
sound (instr 2).

EXAMPLE 03A09.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

;--- increase or decrease to hear the difference more or less evident
ksmps = 128

nchnls = 2

0dbfs = 1



instr 1 ;envelope at k-time

aSine oscils .5, 800, 0
KEnv transeg 0, .1, 5, 1, -5,
alut = aSine * kEnv
outs aout, aOut
endin
instr 2 ;envelope at a-time
aSine oscils .5, 800, O
aEnv transeg o, .1, 5, 1, -5,
aout = aSine *
outs aout, aOut
endin
</CsInstruments>
<CsScore>
r 5 ;repeat the following line 5 times
i101
s ;end of section
rs5
i201
e
</CsScore>

</CsoundSynthesizer>



14 LOCAL AND GLOBAL VARIABLES

VARIABLE TYPES

In Csound, there are several types of variables. It is important to understand the differences of
these types. There are

e initialization variables, which are updated at each initialization pass, i.e. at the beginning
of each note or score event. They start with the character i. To this group count also the
score parameter fields, which always starts with a p, followed by any number: pl refers to
the first parameter field in the score, p2 to the second one, and so on.

e control variables, which are updated at each control cycle (performance pass). They start
with the character k.

e audio variables, which are also updated at each control cycle, but instead of a single
number (like control variables) they consist of a vector (a collection of numbers), having in
this way one number for each sample. They start with the character a.

e string variables, which are updated either at i-time or at k-time (depending on the opcode
which produces a string). They start with the character S.

Except these four standard types, there are two other variable types which are used for
spectral processing:

o f-variables are used for the streaming phase vocoder opcodes (all starting with the
characters pvs), which are very important for doing realtime FFT (Fast Fourier
Transformation) in Csound. They are updated at k-time, but their values depend also on
the FFT parameters like frame size and overlap.

e w-variables are used in some older spectral processing opcodes.

The following example exemplifies all the variable types (except the w-type):

EXAMPLE 03B01.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

0dbfs = 1

nchnls = 2

seed 0; random seed each time different

instr 1; i-time variables

ivari = p2; second parameter in the score
ivar2 random 0, 10; random value between 0 and 10
ivar = ivari + ivar2; do any math at i-rate
print ivari, ivar2, ivar
endin

instr 2; k-time variables

kvari line 0, p3, 10; moves from O to 10 in p3
kvar2 random 0, 10; new random value each control-cycle
kvar = kvarl + kvar2; do any math at k-rate

; --- print each 0.1 seconds
printks "kvarl = %.3f, kvar2 = %.3f, kvar = %.3f%n", 0.1, kvarl, kvar2, kvar
endin

instr 3; a-variables

avaril oscils .2, 400, 0; first audio signal: sine
avar2 rand 1; second audio signal: noise
avar3 butbp avar2, 1200, 12; third audio signal: noise filtered
avar = avarl + avar3; audio variables can also be added
outs avar, avar; write to sound card
endin

instr 4; S-variables

iMyvar random 0, 10; one random value per note

kMyvar random 0, 10; one random value per each control-cycle
;S-variable updated just at init-time



SMyVari sprintf "This string is updated just at init-time:
kMyvar = %d\n", iMyvar
printf_i "%s", 1, SMyvaril
;S-variable updates at each control-cycle
printks "This string is updated at k-time:
kMyvar = %.3f\n", .1, kMyvar
endin

instr 5; f-variables

asSig rand .2; audio signal (noise)
; f-signal by FFT-analyzing the audio-signal
fSigl pvsanal aSig, 1024, 256, 1024, 1
; second f-signal (spectral bandpass filter)
fSig2 pvsbandp fSigl, 350, 400, 400, 450
aout pvsynth fSig2; change back to audio signal
outs alut*20, aOut*20

endin
</CsInstruments>
<CsScore>
; pl p2 p3
i1l ¢} 0.1
i1 0.1 0.1
i2 1 1
i3 2 1
ia 3 1
is 4 1
</CsScore>

</CsoundSynthesizer>

You can think of variables as named connectors between opcodes. You can connect the output
from an opcode to the input of another. The type of connector (audio, control, etc.) can be
known from the first letter of its name.

For a more detailed discussion, see the article An overview Of Csound Variable Types by Andrés

Cabrera in the Csound Journal, and the page about Types, Constants and Variables in the

Canonical Csound Manual .

LOCAL SCOPE

The scope of these variables is usually the instrument in which they are defined. They are
local variables. In the following example, the variables in instrument 1 and instrument 2 have the
same names, but different values.

EXAMPLE 03B02.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 4410; very high because of printing
nchnls = 2

0dbfs = 1

instr 1

;i-variable

iMyvar init ¢}

iMyvar = iMyvar + 1
print iMyvar

;k-variable

kMyvar init [¢]

kMyVar = kMyvar + 1
printk 0, kMyvar

;a-variable

aMyvar oscils .2, 400, ©0
outs aMyvar, aMyVvar

;S-variable updated just at init-time

SMyVvari1 sprintf "This string is updated just at init-time:

kMyvar = %d\n", i(kMyvar)

printf "%s", kMyvar, SMyvVaril

;S-variable updated at each control-cycle

SMyVvar2 sprintfk "This string is updated at k-time:

kMyvar = %d\n", kMyvar
printf "%s", kMyvar, SMyvar2
endin

instr 2
;i-variable



iMyvar init 100

iMyvar = iMyvar + 1
print iMyvar

;k-variable

kMyVvar init 100

kMyvar = kMyvar + 1

printk 0, kMyvar
;a-variable
aMyvar oscils .3, 600, O
outs aMyvar, aMyvar
;S-variable updated just at init-time
SMyVvari sprintf "This string is updated just at init-time:
kMyvar = %d\n", i(kMyvar)
printf "%s", kMyvar, SMyvaril
;S-variable updated at each control-cycle
SMyVar2 sprintfk "This string is updated at k-time:
kMyvar = %d\n", kMyvar
printf "%s", kMyvar, SMyvar2
endin

</CsInstruments>
<CsScore>

i10.3

i21.3

</CsScore>
</CsoundSynthesizer>

This is the output (first the output at init-time by the print opcode, then at each k-cycle the
output of printk and the two printf opcodes):

new alloc for instr 1:

instr 1: iMyVar = 1.000

i 1time 0.10000: 1.00000

This string is updated just at init-time: kMyVar = 0
This string is updated at k-time: kMyVar =1

i 1time 0.20000: 2.00000

This string is updated just at init-time: kMyVar = 0
This string is updated at k-time: kMyVar = 2

i 1time 0.30000: 3.00000

This string is updated just at init-time: kMyVar = 0
This string is updated at k-time: kMyVar = 3

B 0.000.. 1.000 T 1.000 TT 1.000 M: 0.20000 0.20000
new alloc for instr 2:

instr 2: iMyVar = 101.000

i 2time 110000: 101.00000

This string is updated just at init-time: kMyVar = 100
This string is updated at k-time: kMyVar = 101

i 2time 1.20000: 102.00000

This string is updated just at init-time: kMyVar = 100
This string is updated at k-time: kMyVar = 102

i 2time 1.30000: 103.00000

This string is updated just at init-time: kMyVar = 100
This string is updated at k-time: kMyVar = 103

B 1.000.. 1.300 T 1.300 TT 1.300 M: 0.29998 0.29998

GLOBAL SCOPE

If you need variables which are recognized beyond the scope of an instrument, you must define
them as global. This is done by prefixing the character g before the types i, k, a or S. See the
following example:

EXAMPLE 03B03.csd

<CsoundSynthesizer>

<CsInstruments>

;Example by Joachim Heintz

Sr = 44100

ksmps = 4410; very high because of printing
nchnls = 2

0dbfs = 1



;global scalar variables can now be inititalized in the header

giMyvar init [¢]

gkMyvar init [¢]
instr 1
;g9lobal i-variable

giMyvar = giMyvar + 1

print giMyvar

;global k-variable

gkMyVvar = gkMyvar + 1

printk 0, gkMyvar
;9lobal S-variable updated just at init-time
gSMyvarl sprintf "This string is updated just at init-time:
gkMyvar = %d\n", i(gkMyvar)
printf "%s", gkMyvar, gSMyvaril
;9lobal S-variable updated at each control-cycle
gSMyVar2 sprintfk "This string is updated at k-time:
gkMyvar = %d\n", gkMyvar

printf "%s", gkMyvar, gSMyvar2
endin
instr 2
;9lobal i-variable, gets value from instr 1
giMyvar = giMyvar + 1
print giMyvar
;global k-variable, gets value from instr 1
gkMyvar = gkMyvar + 1

printk 0, gkMyvar

;g9lobal S-variable updated just at init-time, gets value from instr 1
printf "Instr 1 tells: '%s'\n", gkMyvar, gSMyvaril

;global S-variable updated at each control-cycle, gets value from instr 1
printf "Instr 1 tells: '%s'\n\n", gkMyvar, gSMyvar2

endin

</CsInstruments>
<CsScore>

i10e .3

i2o0e .3

</CsScore>
</CsoundSynthesizer>

The output shows the global scope, as instrument 2 uses the values which have been changed by
instrument 1 in the same control cycle:

new alloc for instr 1:

instr 1: giMyVar = 1.000

new alloc for instr 2:

instr 2: giMyVar = 2.000

i 1time 0.10000: 1.00000

This string is updated just at init-time: gkMyVar = 0

This string is updated at k-time: gkMyVar =1

i 2time 0.10000: 2.00000

Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0'
Instr 1 tells: 'This string is updated at k-time: gkMyVar = 1'

i 1time 0.20000: 3.00000

This string is updated just at init-time: gkMyVar = 0

This string is updated at k-time: gkMyVar = 3

i 2time 0.20000: 4.00000

Instr 1 tells: "This string is updated just at init-time: gkMyVar = 0'
Instr 1 tells: 'This string is updated at k-time: gkMyVar = 3'

i 1time 0.30000: 5.00000

This string is updated just at init-time: gkMyVar = 0

This string is updated at k-time: gkMyVar = 5

i 2time 0.30000: 6.00000

Instr 1 tells: 'This string is updated just at init-time: gkMyVar = 0'
Instr 1 tells: "This string is updated at k-time: gkMyVar = 5'

HOW TO WORK WITH GLOBAL AUDIO VARIABLES

Some special considerations must be taken if you work with global audio variables. Actually,
Csound behaves basically the same whether you work with a local or a global audio variable. But



usually you work with global audio variables if you want to add several audio signals to a global
signal, and that makes a difference.

The next few examples are going into a bit more detail. If you just want to see the result (=
global audio usually must be cleared), you can skip the next examples and just go to the last one
of this section.

It should be understood first that a global audio variable is treated the same by Csound if it is
applied like a local audio signal:

EXAMPLE 03B04.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1; produces a 400 Hz sine
gaSig oscils .1, 400, ©
endin

instr 2; outputs gaSig
outs gasSig, gaSig
endin

</CsInstruments>
<CsScore>

ii103

i203

</CsScore>
</CsoundSynthesizer>

Of course, there is absolutely no need to use a global variable in this case. If you do it, you risk
that your audio will be overwritten by an instrument with a higher number that uses the same
variable name. In the following example, you will just hear a 600 Hz sine tone, because the 400
Hz sine of instrument 1 is overwritten by the 600 Hz sine of instrument 2:

EXAMPLE 03B05.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
Sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1; produces a 400 Hz sine
gaSig oscils .1, 400, 0
endin

instr 2; overwrites gaSig with 600 Hz sine
gaSig oscils .1, 600, 0
endin

instr 3; outputs gaSig
outs gaSig, gaSig
endin

</CsInstruments>
<CsScore>

i103

i203

i303

</CsScore>
</CsoundSynthesizer>

In general, you will use a global audio variable like a bus to which several local audio signal can be
added. It's this addition of a global audio signal to its previous state which can cause some
trouble. Let's first see a simple example of a control signal to understand what is happening:



EXAMPLE 03B06.csd

<CsoundSynthesizer>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 4410; very high because of printing
nchnls = 2

0dbfs = 1

instr 1
kSum init Q; sum is zero at init pass
kAdd = 1; control signal to add
kSum = kSum + kAdd; new sum in each k-cycle
printk 0, kSum; print the sum
endin

</CsInstruments>
<CsScore>

i10e1

</CsScore>
</CsoundSynthesizer>

In this case, the "sum bus" kSum increases at each control cycle by 1, because it adds the kAdd
signal (which is always 1) in each k-pass to its previous state. It is no different if this is done by a
local k-signal, like here, or by a global k-signal, like in the next example:

EXAMPLE 03B07.csd

<CsoundSynthesizer>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 4410; very high because of printing
nchnls = 2

0dbfs = 1

gkSum init Q; sum is zero at init

instr 1
gkAdd = 1; control signal to add
endin

instr 2
gkSum = gkSum + gkAdd; new sum in each k-cycle
printk 0, gkSum; print the sum
endin

</CsInstruments>
<CsScore>

i101

i201

</CsScore>
</CsoundSynthesizer>

What is happening now when we work with audio signals instead of control signals in this way,
repeatedly adding a signal to its previous state? Audio signals in Csound are a collection of
numbers (a vector). The size of this vector is given by the ksmps constant. If your sample rate
is 44100, and ksmps=100, you will calculate 441 times in one second a vector which consists of
100 numbers, indicating the amplitude of each sample.

So, if you add an audio signal to its previous state, different things can happen, depending on
what is the present state of the vector and what was its previous state. If the previous state
(with ksmps=9) has been [0 0.1 0.2 0.1 0 -0.1-0.2 -0.1 0], and the present state is the same,
you will get a signal which is twice as strong: [0 0.2 0.4 0.2 0 -0.2 -0.4 -0.2 0]. But if the present
state is [0 -0.1-0.2 -0.1 0 0.1 0.2 0.1 0], you wil just get zero's if you add it. This is shown in the
next example with a local audio variable, and then in the following example with a global audio
variable.

EXAMPLE 03B08.csd

<CsoundSynthesizer>

<CsOptions>

-o dac

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 4410; very high because of printing



; (change to 441 to see the difference)

nchnls = 2
0dbfs = 1

instr 1

;initialize a general audio variable
asum init [¢]

;produce a sine signal (change frequency to 401 to see the difference)
aAdd oscils .1, 400, ©
;add it to the general audio (= the previous vector)

asum = asSum + aAdd

kmax max_k asum, 1, 1; calculate maximum
printk 0, kmax; print it out
outs asum, aSum

endin

</CsInstruments>

<CsScore>

i101

</CsScore>

</CsoundSynthesizer>

EXAMPLE 03B09.csd

<CsoundSynthesizer>
<CsOptions>
-0 dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 4410; very high because of printing
; (change to 441 to see the difference)

nchnls = 2
0dbfs = 1

;initialize a general audio variable
gasSum init ¢}

instr 1

;produce a sine signal (change frequency to 401 to see the difference)
aAdd oscils .1, 400, 0

;add it to the general audio (= the previous vector)
gasum = gasum + aAdd

endin

instr 2
kmax max_k gaSum, 1, 1; calculate maximum
printk 0, kmax; print it out
outs gasSum, gasum
endin

</CsInstruments>
<CsScore>

i101

i201

</CsScore>
</CsoundSynthesizer>

In both cases, you get a signal which increases each 1/10 second, because you have 10 control
cycles per second (ksmps=4410), and the frequency of 400 Hz can evenly be divided by this. If
you change the ksmps value to 441, you will get a signal which increases much faster and is out
of range after 1/10 second. If you change the frequency to 401 Hz, you will get a signal which
increases first, and then decreases, because each audio vector has 40.1 cycles of the sine wave.
So the phases are shifting; first getting stronger and then weaker. If you change the frequency
to 10 Hz, and then to 15 Hz (at ksmps=44100), you cannot hear anything, but if you render to
file, you can see the whole process of either enforcing or erasing quite clear:



Self-reinforcing global audio signal on account of its state in one control cycle being the same as
in the previous one

Partly self-erasing global audio signal because of phase inversions in two subsequent control
cycles

So the result of all is: If you work with global audio variables in a way that you add several local
audio signals to a global audio variable (which works like a bus), you must clear this global bus at
each control cycle. As in Csound all the instruments are calculated in ascending order, it should
be done either at the beginning of the first, or at the end of the last instrument. Perhaps it is
the best idea to declare all global audio variables in the orchestra header first, and then clear
them in an "always on" instrument with the highest number of all the instruments used. This is
an example of a typical situation:

EXAMPLE 03B10.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

;initialize the global audio variables
gaBusL init ¢}
gaBusR init [¢]
;make the seed for random values each time different
seed [¢]

instr 1; produces short signals

loop:

ibur random .3, 1.5
timout 0, ibur, makenote
reinit loop

makenote:



iFreq random 300, 1000

ivol random -12, -3; dB
iPan random 0, 1; random panning for each signal
asin oscil3 ampdb(ivol), iFreq, 1
aEnv transeg 1, iDur, -10, 0O; env in a-rate is cleaner
aAdd = asSin * aEnv
aL, aR pan2 aAdd, iPan
gaBusL = gaBusL + alL; add to the global audio signals
gaBusR = gaBusR + aR
endin

instr 2; produces short filtered noise signals (4 partials)

loop:

ibur random .1, .7
timout 0, ibDur, makenote
reinit loop

makenote:

iFreq random 100, 500

ivol random -24, -12; dB

iPan random 0, 1

aNois rand ampdb(iVol)

aFilt reson aNois, iFreq, iFreq/10

aRes balance aFilt, aNois

aEnv transeg 1, iDur, -10, 0

aAdd = aRes * aEnv

aL, aR pan2 aAdd, iPan

gaBusL = gaBusL + aL; add to the global audio signals

gaBusR = gaBusR + aR

endin

instr 3; reverb of gaBus and output
aL, aR freeverb gaBusL, gaBusR, .8, .5
outs aL, aR
endin

instr 100; clear global audios at the end
clear gaBusL, gaBusR
endin

</CsInstruments>
<CsScore>

f 10 1024 1061 .5 .3 .1
il10 20

i20 20

i3 0 20

i 100 0 20

</CsScore>
</CsoundSynthesizer>

THE CHN OPCODES FOR GLOBAL VARIABLES

Instead of using the traditional g-variables for any values or signals which are to transfer
between several instruments, it is also possible to use the chn opcodes. An i-, k-, a- or S-value
or signal can be set by chnset and received by chnget. One advantage is to have strings as
names, so that you can choose intuitive names.

For audio variables, instead of performing an addition, you can use the chnmix opcode. For
clearing an audio variable, the chnclear opcode can be used.

EXAMPLE 03BIl.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1; send i-values
chnset 1, "sio"
chnset -1, "non"
endin

instr 2; send k-values

kfreq randomi 100, 300, 1
chnset kfreq, "cntrfreq"
kbw = kfreq/10

chnset kbw, "bandw"



endin

instr 3; send a-values

anois rand .1
chnset anois, "noise"
loop:
idur random .3, 1.5
timout 0, idur, do
reinit loop
do:
ifreq random 400, 1200
iamp random .1, .3
asig oscils iamp, ifreq, ©
aenv transeg 1, idur, -10, 0
asine = asig * aenv
chnset asine, "sine"
endin

instr 11; receive some chn values and send again

ivalil chnget "sio"
ival2 chnget "non"
print ivall, ival2
kentfreq chnget "cntrfreq"
kbandw chnget "bandw"
anoise chnget "noise"
afilt reson anoise, kcntfreq, kbandw
afilt balance afilt, anoise

chnset afilt, "filtered"
endin

instr 12; mix the two audio signals

amix1 chnget "sine"
amix2 chnget "filtered"
chnmix amix1, "mix"
chnmix amix2, "mix"
endin

instr 20; receive and reverb

amix chnget "mix"
aL, aR freeverb amix, amix, .8, .5
outs aL, aR
endin

instr 100; clear
chnclear "mix"
endin

</CsInstruments>
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100 0 20
</CsScore>
</CsoundSynthesizer>



15 CONTROL STRUCTURES

In a way, control structures are the core of a programming language. The fundamental element
in each language is the conditional if branch. Actually all other control structures like for-, until-
or while-loops can be traced back to if-statements.

So, Csound provides mainly the if-statement; either in the usual if-then-else form, or in the older
way of an if-goto statement. These ones will be covered first. Though all necessary loops can be
built just by if-statements, Csound's loop facility offers a more comfortable way of performing
loops. They will be introduced in the Loop section of this chapter. At least, time loops are shown,
which are particulary important in audio programming languages.

IF I-TIME THEN NOT K-TIME!

The fundamental difference in Csound between i-time and k-time which has been explained in a
previous chapter, must be regarded very carefully when you work with control structures. If you
make a conditional branch at i-time, the condition will be tested just once for each note, at
the initialization pass. If you make a conditional branch at k-time, the condition will be tested
again and again in each control-cycle.

For instance, if you test a soundfile whether it is mono or stereo, this is done at init-time. If you
test an amplitude value to be below a certain threshold, it is done at performance time (k-time).
If you get user-input by a scroll number, this is also a k-value, so you need a k-condition.

Thus, all if and loop opcodes have an "i" and a "k" descendant. In the next few sections, a
general introduction into the different control tools is given, followed by examples both at i-time
and at k-time for each tool.

IF - THEN - [ELSEIF - THEN -] ELSE

The use of the if-then-else statement is very similar to other programming languages. Note that
in Csound, "then" must be written in the same line as "if" and the expression to be tested, and
that you must close the if-block with an "endif* statement on a new line:

if <condition> then
else
endif
It is also possible to have no "else" statement:
if <condition> then
endif
Or you can have one or more "elseif-then" statements in between:
if <conditionil> then
éiéeif <condition2> then
else
endif
If statements can also be nested. Each level must be closed with an "endif". This is an example
with three levels:
if <conditionl1> then; first condition opened
if <condition2> then; second condition openend
if <condition3> then; third condition openend
else
éﬁ&if; third condition closed
elseif <condition2a> then

endif; second condition closed



else

endif; first condition closed
i-Rate Examples

A typical problem in Csound: You have either mono or stereo files, and want to read both with a
stereo output. For the real stereo ones that means: use soundin (diskin / diskin2) with two
output arguments. For the mono ones it means: use soundin / diskin / diskin2 with one output
argument, and throw it to both output channels:

EXAMPLE 03C0l.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sSr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1
Sfile = "/my/file.wav" ;your soundfile path here
ifilchnls filenchnls Sfile
if ifilchnls == 1 then ;mono
aL soundin Sfile
aR = aL
else ;stereo
aL, aR soundin Sfile
endif
outs aL, aR
endin

</CsInstruments>
<CsScore>

i10e5

</CsScore>
</CsoundSynthesizer>

If you use QuteCsound, you can browse in the widget panel for the soundfile. See the
corresponding example in the QuteCsound Example menu.

k-Rate Examples
The following example establishes a moving gate between 0 and 1. If the gate is above 0.5, the

gate opens and you hear a tone. If the gate is equal or below 0.5, the gate closes, and you hear
nothing.

EXAMPLE 03C02.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

seed 0; random values each time different

giTone ftgen 0, 0, 2710, 10, 1, .5, .3, .1

instr 1
kGate randomi 0, 1, 3; moves between © and 1 (3 new values per second)
kFreq randomi 300, 800, 1; moves between 300 and 800 hz (1 new value per
sec)
kdB randomi -12, 0, 5; moves between -12 and 0 dB

; (5 new values per sec)

aSig oscil3 1, kFreq, giTone
kvol init [¢]

if kGate > 0.5 then; if kGate is larger than 0.5
kvol = ampdb(kdB); open gate

else
kvol = 0; otherwise close gate

endif



kvol port kvol, .02; smooth volume curve to avoid clicks
aout = asSig * kvol
outs a0ut, aout
endin

</CsInstruments>
<CsScore>

il10 30

</CsScore>
</CsoundSynthesizer>

Short Form: (avb? x:y)

If you need an if-statement to give a value to an (i- or k-) variable, you can also use a traditional
short form in parentheses: (a v b ? x : y). It asks whether the condition a or b is true. If a, the
value is set to x; if b, to y. For instance, the last example could be written in this way:

EXAMPLE 03C03.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
Sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

seed [¢]
giTone ftgen 0, 0, 2rn10, 10, 1, .5, .3, .1

instr 1
kGate randomi 0, 1, 3; moves between © and 1 (3 new values per second)
kFreq randomi 300, 800, 1; moves between 300 and 800 hz
; (1 new value per sec)
kdB randomi -12, 0, 5; moves between -12 and 0 dB
; (5 new values per sec)
asig oscil3 1, kFreq, giTone
kvol init [¢]
kvol = (kGate > 0.5 ? ampdb(kdB) : 0); short form of condition
kvol port kvol, .02; smooth volume curve to avoid clicks
aout = asSig * kvol
outs alut, alOut
endin

</CsInstruments>
<CsScore>

i10 20

</CsScore>
</CsoundSynthesizer>

IF - GOTO

An older way of performing a conditional branch - but still useful in certain cases - is an "if"
statement which is not followed by a "then", but by a label name. The "else" construction follows
(or doesn't follow) in the next line. Like the if-then-else statement, the if-goto works either at i-
time or at k-time. You should declare the type by either using igoto or kgoto. Usually you need
an additional igoto/kgoto statement for omitting the "else" block if the first condition is true. This
is the general syntax:

i-time
if <condition> igoto this; same as if-then
igoto that; same as else

this: ;the label "this"

igoto continue ;skip the "that" block
that: ; ... and the label "that" must be found

continue: ;go on after the conditional branch

k-time

if <condition> kgoto this; same as if-then
kgoto that; same as else
this: ;the label "this"



kgoto continue ;skip the "that" block
that: ; ... and the label "that" must be found

continue: ;go on after the conditional branch

i-Rate Examples

This is the same example as above in the if-then-else syntax for a branch depending on a mono
or stereo file. If you just want to know whether a file is mono or stereo, you can use the "pure"
if-igoto statement:

EXAMPLE 03C04.csd

<CsoundSynthesizer>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1
Sfile = "/Joachim/Materialien/SamplesKlangbearbeitung/Kontrabass.aif"
ifilchnls filenchnls Sfile
if ifilchnls == 1 igoto mono; condition if true
igoto stereo; else condition
mono:
prints "The file is mono!%n"
igoto continue
stereo:
prints "The file is stereo!%n"
continue:
endin

</CsInstruments>
<CsScore>

i100

</CsScore>
</CsoundSynthesizer>

But if you want to play the file, you must also use a k-rate if-kgoto, because you have not just
an action at i-time (initializing the soundin opcode) but also at k-time (producing an audio signal).
So the code in this case is much more cumbersome than with the if-then-else facility shown
previously.

EXAMPLE 03C05.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1
Sfile = "my/file.wav"
ifilchnls filenchnls Sfile

if ifilchnls == 1 kgoto mono
kgoto stereo
if ifilchnls == 1 igoto mono; condition if true
igoto stereo; else condition
mono:
aL soundin Sfile
ar = aL
igoto continue
kgoto continue
stereo:
aL, aR soundin Sfile
continue:
outs aL, aR
endin
</CsInstruments>
<CsScore>

i105



</CsScore>
</CsoundSynthesizer>

k-Rate Examples

This is the same example as above in the if-then-else syntax for a moving gate between 0 and 1:

EXAMPLE 03C06.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
Sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

seed [¢]
giTone ftgen 0, 0, 2rn10, 10, 1, .5, .3, .1

instr 1
kGate randomi 0, 1, 3; moves between © and 1 (3 new values per second)
kFreq randomi 300, 800, 1; moves between 300 and 800 hz

; (1 new value per sec)
kdB randomi -12, 0, 5; moves between -12 and 0 dB
; (5 new values per sec)

asSig oscil3 1, kFreq, giTone
kvol init [¢]

if kGate > 0.5 kgoto open; if condition is true

kgoto close; "else" condition
open:
kvol = ampdb (kdB)
kgoto continue
close:
kvol = [¢]
continue:
kvol port kvol, .02; smooth volume curve to avoid clicks
aout = asSig * kvol

outs alut, aoOut
endin

</CsInstruments>
<CsScore>

il10 30

</CsScore>
</CsoundSynthesizer>

LOOPS

Loops can be built either at i-time or at k-time just with the "if* facility. The following example
shows an i-rate and a k-rate loop created using the if-i/kgoto facility:

EXAMPLE 03C07.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

instr 1 ;i-time loop: counts from 1 until 10 has been reached
icount = 1

count:
print icount
icount = icount + 1
if icount < 11 igoto count
prints "i-END!%n"
endin

instr 2 ;k-rate loop: counts in the 100th k-cycle from 1 to 11
kcount init [¢]
ktimek timeinstk ;counts k-cycle from the start of this instrument
if ktimek == 100 kgoto loop
kgoto noloop
loop:
printks "k-cycle %d reached!%n", 0, ktimek
kcount = kcount + 1
printk2 kcount
if kcount < 11 kgoto loop
printks "k-END!%n", ©



noloop:
endin

</CsInstruments>
<CsScore>

i100

i201

</CsScore>
</CsoundSynthesizer>

But Csound offers a slightly simpler syntax for this kind of i-rate or k-rate loops. There are four
variants of the loop opcode. All four refer to a label as the starting point of the loop, an index
variable as a counter, an increment or decrement, and finally a reference value (maximum or
minimum) as comparision:

e loop It counts upwards and looks if the index variable is lower than the reference value;

e loop_le also counts upwards and looks if the index is lower than or equal to the reference
value;

e loop_gt counts downwards and looks if the index is greater than the reference value;

loop_ge also counts downwards and looks if the index is greater than or equal to the

reference value.

[ ]

As always, all four opcodes can be applied either at i-time or at k-time. Here are some
examples, first for i-time loops, and then for k-time loops.

i-Rate Examples

The following .csd provides a simple example for all four loop opcodes:

EXAMPLE 03C08.csd
<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

instr 1 ;loop_lt: counts from 1 upwards and checks if < 10

icount = 1
loop:
print icount
loop_1t icount, 1, 10, loop
prints "Instr 1 terminated!%n"
endin

instr 2 ;loop_le: counts from 1 upwards and checks if <= 10

icount = 1
loop:
print icount
loop_le icount, 1, 10, loop
prints "Instr 2 terminated!%n"
endin

instr 3 ;loop_gt: counts from 10 downwards and checks if > 0
icount = 10

loop:
print icount
loop_gt icount, 1, 0, loop
prints "Instr 3 terminated!%n"
endin

instr 4 ;loop_ge: counts from 10 downwards and checks if >= 0
icount = 10

loop:
print icount
loop_ge icount, 1, 0, loop
prints "Instr 4 terminated!%n"

endin

</CsInstruments>

<CsScore>

il100

i200

i300

i400

</CsScore>

</CsoundSynthesizer>
The next example produces a random string of 10 characters and prints it out:

EXAMPLE 03C09.csd



<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

instr 1
icount = [¢]
Sname = "", starts with an empty string
loop:
ichar random 65, 90.999
Schar sprintf "%c", int(ichar); new character
Sname strcat Sname, Schar; append to Sname

loop_1t icount, 1, 10, loop; loop construction
printf_i "My name is '%s'!\n", 1, Sname; print result
endin

</CsInstruments>
<CsScore>

; call instr 1 ten times
r 10

i100

</CsScore>
</CsoundSynthesizer>

You can also use an i-rate loop to fill a function table (= buffer) with any kind of values. In the
next example, a function table with 20 positions (indices) is filled with random integers between 0
and 10 by instrument 1. Nearly the same loop construction is used afterwards to read these
values by instrument 2.

EXAMPLE 03C10.csd
<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

giTable ftgen 0, 0, -20, -2, 0; empty function table with 20 points
seed 0; each time different seed

instr 1 ; writes in the table

icount = [¢]

loop:

ival random 0, 10.999 ;random value

; --- write in giTable at first, second, third ... position

tableiw int(ival), icount, giTable
loop_1t icount, 1, 20, loop; loop construction
endin

instr 2; reads from the table

icount = [¢]
loop:
; --- read from giTable at first, second, third ... position
ival tablei icount, giTable
print ival; prints the content
loop_1t icount, 1, 20, loop; loop construction
endin
</CsInstruments>
<CsScore>
i100
i200
</CsScore>
</CsoundSynthesizer>

k-Rate Examples

The next example performs a loop at k-time. Once per second, every value of an existing
function table is changed by a random deviation of 10%. Though there are special opcodes for
this task, it can also be done by a k-rate loop like the one shown here:

EXAMPLE 03CT1l.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 441

nchnls = 2

0dbfs = 1



giSine ftgen 0, 0, 256, 10, 1; sine wave

seed 0; each time different seed
instr 1
ktiminstk timeinstk ;time in control-cycles
kcount init 1
if ktiminstk == kcount * kr then; once per second table values manipulation:
kndx = [}
loop:
krand random -.1, .1;random factor for deviations
kval table kndx, giSine; read old value
knewval = kval + (kval * krand); calculate new value
tablew knewval, kndx, giSine; write new value
loop_1t kndx, 1, 256, loop; loop construction
kcount = kcount + 1; increase counter
endif
asig poscil .2, 400, giSine
outs asig, asig
endin
</CsInstruments>
<CsScore>
il10 10
</CsScore>

</CsoundSynthesizer>

TIME LOOPS

Until now, we have just discussed loops which are executed "as fast as possible", either at i-time
or at k-time. But, in an audio programming language, time loops are of particular interest and
importance. A time loop means, repeating any action after a certain amount of time. This
amount of time can be equal to or different to the previous time loop. The action can be, for
instance: playing a tone, or triggering an instrument, or calculating a new value for the
movement of an envelope.

In Csound, the usual way of performing time loops, is the timout facility. The use of timout is a
bit intricate, so some examples are given, starting from very simple to more complex ones.

Another way of performing time loops is by using a measurement of time or k-cycles. This
method is also discussed and similar examples to those used for the timout opcode are given so
that both methods can be compared.

timout Basics

The timout opcode refers to the fact that in the traditional way of working with Csound, each
"note" (an "i" score event) has its own time. This is the duration of the note, given in the score
by the duration parameter, abbreviated as "p3". A timout statement says: "l am now jumping
out of this p3 duration and establishing my own time." This time will be repeated as long as the
duration of the note allows it

Let's see an example. This is a sine tone with a moving frequency, starting at 400 Hz and ending
at 600 Hz. The duration of this movement is 3 seconds for the first note, and 5 seconds for the
second note

EXAMPLE 03C12.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1

instr 1
kFreq expseg 400, p3, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin



</CsInstruments>
<CsScore>

ii103

il145

</CsScore>
</CsoundSynthesizer>

Now we perform a time loop with timout which is 1 second long. So, for the first note, it will be
repeated three times, and for the second note five times:

EXAMPLE 03C13.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2710, 10, 1

instr 1
loop:
timout 0, 1, play
reinit loop
play:
kFreq expseg 400, 1, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin

</CsInstruments>
<CsScore>

ii103

il145

</CsScore>
</CsoundSynthesizer>

This is the general syntax of timout:

first_label:
timout istart, idur, second_label
reinit first_label
second_label:
<any action you want to have here>

The first_label is an arbitrary word (followed by a colon) for marking the beginning of the time
loop section. The istart argument for timout tells Csound, when the second_label section is to
be executed. Usually istart is zero, telling Csound: execute the second_label section immediately,
without any delay. The idur argument for timout defines how many seconds the second_label
section is to be executed before the time loop begins again. Note that the "reinit first_label" is
necessary to start the second loop after idur seconds with a resetting of all the values. (See the
explanations about reinitialization in the chapter Initilalization And Performance Pass.)

As usual when you work with the reinit opcode, you can use a rireturn statement to constrain
the reinit-pass. In this way you can have both, the timeloop section and the non-timeloop section
in the body of an instrument:

EXAMPLE 03C14.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
Sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1
instr 1

loop:
timout 0, 1, play



reinit loop

play:
kFreql expseg 400, 1, 600
aTonel oscil3 .2, kFreql, giSine

rireturn ;end of the time loop
kFreq2 expseg 400, p3, 600
aTone2 poscil .2, kFreq2, giSine

outs aTonel+aTone2, aTonel+aTone2
endin

</CsInstruments>
<CsScore>

i103

il145

</CsScore>
</CsoundSynthesizer>

timout Applications

In a time loop, it is very important to change the duration of the loop. This can be done either by
referring to the duration of this note (p3) ...

EXAMPLE 03C15.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1

instr 1
loop:
timout 0, p3/5, play
reinit loop
play:
kFreq expseg 400, p3/5, 600
aTone poscil .2, kFreq, giSine
outs aTone, aTone
endin

</CsInstruments>
<CsScore>

i103

i145

</CsScore>
</CsoundSynthesizer>

... or by calculating new values for the loop duration on each reinit pass, for instance by random
values:

EXAMPLE 03C16.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1

instr 1

loop:

idur random .5, 3 ;new value between 0.5 and 3 seconds each time
timout 0, idur, play
reinit loop

play:

kFreq expseg 400, idur, 600

aTone poscil .2, kFreq, giSine
outs aTone, aTone



endin

</CsInstruments>
<CsScore>

i1020

</CsScore>
</CsoundSynthesizer>

The applications discussed so far have the disadvantage that all the signals inside the time loop
must definitely be finished or interrupted, when the next loop begins. In this way it is not possible
to have any overlapping of events. For achieving this, the time loop can be used just to trigger
an event. This can be done with event_i or scoreline_i. In the following example, the time loop in
instrument 1 triggers each half to two seconds an instance of instrument 2 for a duration of 1 to
5 seconds. So usually the previous instance of instrument 2 will still play when the new instance
is triggered. In instrument 2, some random calculations are executed to make each note
different, though having a descending pitch (glissando):

EXAMPLE 03C17.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giSine ftgen 0, 0, 2n10, 10, 1
instr 1
loop:
idurloop random .5, 2 ;duration of each loop
timout 0, idurloop, play
reinit loop
play:
idurins random 1, 5 ;duration of the triggered instrument
event_i "i", 2, 0, idurins ;triggers instrument 2
endin
instr 2
ifreql random 600, 1000 ;starting frequency
idiff random 100, 300 ;difference to final frequency
ifreq2 = ifreql - idiff ;final frequency
kFreq expseg ifreqi, p3, ifreq2 ;glissando
iMaxdb random -12, 0 ;peak randomly between -12 and 0 dB
kAmp transeg ampdb(iMaxdb), p3, -10, 0 ;envelope
aTone poscil kAmp, kFreq, giSine
outs aTone, aTone
endin
</CsInstruments>
<CsScore>
i10 30
</CsScore>

</CsoundSynthesizer>

The last application of a time loop with the timout opcode which is shown here, is a randomly
moving envelope. If you want to create an envelope in Csound which moves between a lower
and an upper limit, and has one new random value in a certain time span (for instance, once a
second), the time loop with timout is one way to achieve it. A line movement must be performed
in each time loop, from a given starting value to a new evaluated final value. Then, in the next
loop, the previous final value must be set as the new starting value, and so on. This is a possible
solution:

EXAMPLE 03C18.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1



giSine ftgen 0, 0, 2n10, 10, 1

seed ¢}
instr 1

iupper = Q; upper and ...

ilower = -24; ... lower limit in dB

ivall random ilower, iupper; starting value

loop:

idurloop random .5, 2; duration of each loop
timout 0, idurloop, play
reinit loop

play:

ival2 random ilower, iupper; final value

kdb linseg ivali, idurloop, ival2

ivalil = ival2; let ival2 be ivall for next loop
rireturn ;end reinit section

aTone poscil ampdb(kdb), 400, giSine
outs aTone, aTone

endin

</CsInstruments>

<CsScore>

i10 30

</CsScore>

</CsoundSynthesizer>

Note that in this case the oscillator has been put after the time loop section (which is terminated
by the rireturn statement. Otherwise the oscillator would start afresh with zero phase in each
time loop, thus producing clicks.

Time Loops by using the metro Opcode

The metro opcode outputs a "1" at distinct times, otherwise it outputs a "0". The frequency of
this "banging" (which is in some way similar to the metro objects in PD or Max) is given by the
kfreq input argument. So the output of metro offers a simple and intuitive method for controlling
time loops, if you use it to trigger a separate instrument which then carries out another job.
Below is a simple example for calling a subinstrument twice a second:

EXAMPLE 03C19.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1; triggering instrument
kTrig metro 2; outputs "1" twice a second
if kTrig == 1 then
event

"i"', 2, 0, 1
endif
endin

instr 2; triggered instrument

asSig oscils .2, 400, O
aEnv transeg 1, p3, -10, O
outs aSig*aEnv, aSig*aEnv
endin
</CsInstruments>
<CsScore>
i1010
</CsScore>

</CsoundSynthesizer>

The example which is given above (03Cl7.csd) as a flexible time loop by timout, can be done with
the metro opcode in this way:

EXAMPLE 03C20.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>



;Example by Joachim Heintz

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giSine ftgen 0, 0, 2n10, 10, 1
seed [¢]
instr 1
kfreq init 1, give a start value for the trigger frequency
kTrig metro kfreq
if kTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 2
event "i", 2, 0, kdur; call instr 2
kfreq random .5, 2, set new value for trigger frequency
endif
endin
instr 2
ifreql random 600, 1000; starting frequency
idiff random 100, 300; difference to final frequency
ifreq2 = ifreql - idiff; final frequency
kFreq expseg ifreqi, p3, ifreq2; glissando
iMaxdb random -12, 0; peak randomly between -12 and 0 dB
kAmp transeg ampdb(iMaxdb), p3, -10, 0; envelope
aTone poscil kAmp, kFreq, giSine
outs aTone, aTone
endin
</CsInstruments>
<CsScore>
i1l10e 30
</CsScore>

</CsoundSynthesizer>
Note the differences in working with the metro opcode compared to the timout feature:

e As metro works at k-time, you must use the k-variants of event or scoreline to call the
subinstrument. With timout you must use the i-variants of event or scoreline (event_i and
scoreline_i), because it uses reinitialization for performing the time loops.

e You must select the one k-cycle where the metro opcode sends a "1". This is done with an
if-statement. The rest of the instrument is not affected. If you use timout, you usually
must seperate the reinitialized from the not reinitialized section by a rireturn statement.

LINKS

Steven Yi: Control Flow (Part | = Csound Journal Spring 2006, Part 2 = Csound Journal Summer
2006)




16 FUNCTION TABLES

A function table is essentially the same as what other audio programming languages call a buffer,
a table, a list or an array. It is a place where data can be stored in an ordered way. Each
function table has a size: how much data (in Csound just numbers) can be stored in it. Each
value in the table can be accessed by an index, counting from 0 to size-1. For instance, if you
have a function table with a size of 10, and the numbers [1.1 2.2 3.3 5.5 8.8 13.13 21.21 34.34
55.55 89.89] in it, this is the relation of value and index:

VALUE| 1.1} 2.2|| 3.3| 5.5| 8.8 13.13|| 21.21| 34.34| 55.55| 89.89
INDEX |01 |2 |3 |4 |5 6 7 8 9

So, if you want to retrieve the value 13.13, you must point to the value stored under index 5.

The use of function tables is manifold. A function table can contain pitch values to which you
may refer using the input of a MIDI keyboard. A function table can contain a model of a
waveform which is read periodically by an oscillator. You can record live audio input in a function
table, and then play it back. There are many more applications, all using the fast access
(because a function table is part of the RAM) and flexible use of function tables.

HOW TO GENERATE A FUNCTION TABLE

Each function table must be created before it can be used. Even if you want to write values
later, you must first create an empty table, because you must initially reserve some space in
memory for it.

Each creation of a function table in Csound is performed by one of the so-called GEN Routines.
Each GEN Routine generates a function table in a particular way: GENO1 transfers audio samples
from a soundfile into a table, with GENO2 we can write values in "by hand" one by one, GEN10
calculates a waveform using information determining a sum of sinusoids, GEN20 generates
window functions typically used for granular synthesis, and so on. There is a good overview in
the Csound Manual of all existing GEN Routines. Here we will explain the general use and give
simple examples for some frequent cases.

GENO2 And General Parameters For GEN Routines

Let's start with our example above and write the 10 numbers into a function table of the same
size. For this, use of a GENO2 function table is required. A short description of GENO2 from the
manual reads as follows:

f # time size 2 v1 v2 v3 ...
This is the traditional way of creating a function table by an "f statement" or an "f score

event" (in comparision for instance to "i score events" which call instrument instances). The
input parameters after the "f" are the following:

L]

#: a number (as positive integer) for this function table;

e time: at which time to be the function table available (usually 0 = from the beginning);

e size: the size of the function table. This is a bit tricky, because in the early days of
Csound just power-of-two sizes for function tables were possible (2, 4, 8, 16, ...). Nowadays
nearly every GEN Routine accepts other sizes, but these non-power-of-two sizes must
be declared as a negative number!

e 2: the number of the GEN Routine which is used to generate the table. And here is
another important point which must be regarded. By default, Csound normalizes the
table values. This means that the maximum is scaled to +1 if positive, and to -1 if
negative. To prevent Csound from normalizing, a negative number must be given as GEN
number (here -2 instead of 2).

e v1v2 v3 ...: the values which are written into the function table.

So this is the way to put the values [1.1 2.2 3.3 5.5 8.8 13.13 21.21 34.34 55.55 89.89] in a function
table with the number 1:



EXAMPLE 03DO01.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz
instr 1 ;prints the values of table 1 or 2

prints "%nFunction Table %d:%n", p4

indx init ¢}

loop:

ival table indx, p4
prints "Index %d = %f%n", indx, ival
loop_1t indx, 1, 10, loop

endin
</CsInstruments>
<CsScore>

f10 -10 -2 1.1 2.2 3.3 5.5 8.8 13.13 21.21 34.34 55.55 89.89; not normalized
f20 -10 2 1.1 2.2 3.3 5.5 8.8 13.13 21.21 34.34 55.55 89.89; normalized

i 10 0 1; prints function table 1

i 10 0 2; prints function table 2

</CsScore>

</CsoundSynthesizer>

Instrument 1 just serves to print the values of the table (the tablei opcode will be explained
later). See the difference whether the table is normalized (positive GEN number) or not
normalized (negative GEN number).

Using the ftgen opcode is a more modern way of creating a function table, which is in some ways
preferable to the old way of writing an f-statement in the score. The syntax is explained below:

givar ftgen ifn, itime, isize, igen, iargl [, iarg2 [, ...]]

e giVar: a variable name. Each function is stored in an i-variable. Usually you want to have
access to it from every instrument, so a gi-variable (global initialization variable) is given.

e ifn: a number for the function table. If you type in O, you give Csound the job to choose a
number, which is mostly preferable.

The other parameters (size, GEN number, individual arguments) are the same as in the f-
statement in the score. As this GEN call is now a part of the orchestra, each argument is
separated from the next by a comma (not by a space or tab like in the score).

So this is the same example as above, but now with the function tables being generated in the
orchestra header:

EXAMPLE 03D02.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

giFtl ftgen 1, 0, -10, -2, 1.1, 2.2, 3.3, 5.5, 8.8, 13.13, 21.21, 34.34, 55.55,
89.89
giFt2 ftgen 2, 0, -10, 2, 1.1, 2.2, 3.3, 5.5, 8.8, 13.13, 21.21, 34.34, 55.55,
89.89

instr 1; prints the values of table 1 or 2

prints "%nFunction Table %d:%n", p4

indx init [¢]

loop:

ival table indx, p4
prints "Index %d = %f%n", indx, ival
loop_1t indx, 1, 10, loop

endin
</CsInstruments>
<CsScore>

i 10 0 1; prints function table 1
i 10 0 2; prints function table 2
</CsScore>

</CsoundSynthesizer>

GENOT1: Importing a Soundfile

GENO1 is used for importing soundfiles stored on disk into the computer's RAM, ready for for use
by a number of Csound's opcodes in the orchestra. A typical ftgen statement for this import
might be the following:

varname ifn itime isize igen Sfilnam iskip iformat ichn
giFile ftgen 0, O, o, 1, "myfile.wav", 0, o, 0



e varname, ifn, itime: These arguments have the same meaning as explained above in
reference to GENO2.

e isize: Usually you won't know the length of your soundfile in samples, and want to have a
table length which includes exactly all the samples. This is done by setting isize=0. (Note
that some opcodes may need a power-of-two table. In this case you can not use this
option, but must calculate the next larger power-of-two value as size for the function
table.)

e igen: As explained in the previous subchapter, this is always the place for indicating the
number of the GEN Routine which must be used. As always, a positive number means
normalizing, which is usually convenient for audio samples.

o Sfilnam: The name of the soundfile in double quotes. Similar to other audio programming
languages, Csound recognizes just the name if your .csd and the soundfile are in the same
folder. Otherwise, give the full path. (You can also include the folder via the "SSDIR"
variable, or add the folder via the "--env:NAME+=VALUE" option.)

e iskip: The time in seconds you want to skip at the beginning of the soundfile. 0 means
reading from the beginning of the file.
iformat: Usually O, which means: read the sample format from the soundfile header.
ichn: 1 = read the first channel of the soundfile into the table, 2 = read the second
channel, etc. 0 means that all channels are read.

The next example plays a short sample. You can download it here. Copy the text below, save it
to the same location as the "fox.wav" soundfile, and it should work. Reading the function table is
done here with the poscil3 opcode which can deal with non-power-of-two tables.

EXAMPLE 03D03.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
Sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSample ftgen 0, 6, 0, 1, "fox.wav", 0, 0, 1

instr 1
itablen = ftlen(giSample) ;length of the table
idur = itablen / sr ;duration
aSamp poscil3 .5, 1/idur, giSample
outs aSamp, aSamp
endin

</CsInstruments>
<CsScore>

il10 2.757
</CsScore>
</CsoundSynthesizer>

GEN10: Creating a Waveform

The third example for generating a function table covers one classical case: building a function
table which stores one cycle of a waveform. This waveform is then read by an oscillator to
produce a sound.

There are many GEN Routines to achieve this. The simplest one is GEN10. It produces a
waveform by adding sine waves which have the "harmonic" frequency relations 1:2:3 : 4 ...
After the usual arguments for function table number, start, size and gen routine number, which
are the first four arguments in ftgen for all GEN Routines, you must specify for GEN10 the
relative strengths of the harmonics. So, if you just provide one argument, you will end up with a
sine wave (Ist harmonic). The next argument is the strength of the 2nd harmonic, then the 3rd,
and so on. In this way, you can build the standard harmonic waveforms by sums of sinoids. This
is done in the next example by instruments 1-5. Instrument 6 uses the sine wavetable twice: for
generating both the sound and the envelope.

EXAMPLE 03D04.csd

<CsoundSynthesizer>



<CsOptions>

-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sSr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giSine ftgen 0, 0, 2n10, 10, 1
giSaw ftgen 0, 0, 2n10, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9
giSquare ftgen 0, 0, 2nrn10, 10, 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9
giTri ftgen o, 0, 2nrn10, 10, 1, 0, -1/9, O, 1/25, 0, -1/49, 0, 1/81
giImp ftgen 0, 6, 270, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1

instr 1 ;plays the sine wavetable
aSine poscil .2, 400, giSine
aEnv linen aSine, .01, p3, .05

outs aEnv, aEnv
endin

instr 2 ;plays the saw wavetable

aSaw poscil .2, 400, giSaw
aEnv linen aSaw, .01, p3, .05
outs aEnv, aEnv
endin

instr 3 ;plays the square wavetable

asqu poscil .2, 400, giSquare
aEnv linen asqu, .01, p3, .05
outs aEnv, aEnv
endin

instr 4 ;plays the triangular wavetable

aTri poscil .2, 400, giTri
aEnv linen aTri, .01, p3, .05
outs aeEnv, aEnv
endin

instr 5 ;plays the impulse wavetable

aImp poscil .2, 400, giImp
aEnv linen aImp, .01, p3, .05
outs akEnv, aEnv
endin

instr 6 ;plays a sine and uses the first half of its shape as envelope
aEnv poscil .2, 1/6, giSine
aSine poscil aEnv, 400, giSine
outs aSine, aSine
endin

</CsInstruments>
<CsScore>

e
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</CsScore>
</CsoundSynthesizer>

HOW TO WRITE VALUES TO A FUNCTION TABLE

As we saw, each GEN Routine generates a function table, and by doing this, it writes values into
it. But in certain cases you might first want to create an empty table, and then write the values
into it later. This section is about how to do this.

Actually it is not correct to speak of an "empty table". If Csound creates an "empty" table, in
fact it writes zeros to the indices which are not specified. This is perhaps the easiest method of
creating an "empty" table for 100 values:

giEmpty ftgen 0, 0, -100, 2, ©

The basic opcode which writes values to existing function tables is tablew and its i-time
descendant tableiw. Note that you may have problems with some features if your table is not a
power-of-two size . In this case, you can also use tabw / tabw_i, but they don't have the offset-
and the wraparound-feature. As usual, you must differentiate if your signal (variable) is i-rate, k-
rate or a-rate. The usage is simple and differs just in the class of values you want to write to




the table (i-, k- or a-variables):

tableiw isig, indx, ifn [, ixmode] [, ixoff] [, iwgmode]
tablew ksig, kndx, ifn [, ixmode] [, ixoff] [, iwgmode]
tablew asig, andx, ifn [, ixmode] [, ixoff] [, iwgmode]

o isig, ksig, asig is the value (variable) you want to write into specified locations of the
table;
indx, kndx, andx is the location (index) where you write the value;
ifn is the function table you want to write in;
ixmode gives the choice to write by raw indices (counting from 0 to size-1), or by a
normalized writing mode in which the start and end of each table are always referred as 0
and 1 (not depending on the length of the table). The default is ixmode=0 which means the
raw index mode. A value not equal to zero for ixmode changes to the normalized index
mode.
ixoff (default=0) gives an index offset. So, if indx=0 and ixoff=5, you will write at index 5.
iwgmode tells what you want to do if your index is larger than the size of the table. If
iwgmode=0 (default), any index larger than possible is written at the last possible index. If
iwgmode=1, the indices are wrapped around. For instance, if your table size is 8, and your
index is 10, in the wraparound mode the value will be written at index 2.

Here are some examples for i-, k- and a-rate values.

i-Rate Example

The following example calculates the first 12 values of a Fibonacci series and writes it to a table.
This table has been created first in the header (filled with zeros). Then instrument 1 calculates
the values in an i-time loop and writes them to the table with tableiw. Instrument 2 just serves
to print the values.

EXAMPLE 03D05.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

giFt ftgen 0, 0, -12, -2, 0
instr 1; calculates first 12 fibonacci values and writes them to giFt
istart = 1
inext = 2
indx = [¢]
loop:
tableiw istart, indx, giFt ;writes istart to table
istartold = istart ;keep previous value of istart
istart = inext ;reset istart for next loop
inext = istartold + inext ;reset inext for next loop
loop_1t indx, 1, 12, loop
endin

instr 2; prints the values of the table

prints "%nContent of Function Table:%n"
indx init [¢]
loop:
ival table indx, giFt
prints "Index %d = %f%n", indx, ival
loop_1t indx, 1, ftlen(giFt), loop
endin
</CsInstruments>
<CsScore>
il100
i200
</CsScore>

</CsoundSynthesizer>
k-Rate Example

The next example writes a k-signal continuously into a table. This can be used to record any kind
of user input, for instance by MIDI or widgets. It can also be used to record random movements
of k-signals, like here:

EXAMPLE 03D06.csd

<CsoundSynthesizer>



<CsOptions>

-odac

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz

sSr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giFt ftgen 0, 0, -5*kr, 2, 0; size for 5 seconds of recording

giwave ftgen 0, 0, 2n10, 10, 1, .5, .3, .1; waveform for oscillator
seed [¢]

; - recording of a random frequency movement for 5 seconds, and playing it
instr 1

kFreq randomi 400, 1000, 1 ;random frequency
asnd poscil .2, kFreq, giwave ;play it
outs asnd, aSnd
;;record the k-signal
prints "RECORDING!%n"

;create a writing pointer in the table,
;moving in 5 seconds from index © to the end
kindx linseg 0, 5, ftlen(giFt)
;,write the k-signal
tablew kFreq, kindx, giFt
endin

instr 2; read the values of the table and play it again
;;read the k-signal
prints "PLAYING!%n"
;create a reading pointer in the table,
;moving in 5 seconds from index @ to the end

kindx linseg 0, 5, ftlen(giFt)
;read the k-signal

kFreq table kindx, giFt

asnd oscil3 .2, kFreq, giwWave; play it

outs asnd, asSnd

endin

</CsInstruments>

<CsScore>

i105

i265

</CsScore>

</CsoundSynthesizer>

As you see, in this typical case of writing k-values to a table you need a moving signal for the
index. This can be done using the line or linseg opcode like here, or by using a phasor. The
phasor always moves from 0 to 1in a certain frequency. So, if you want the phasor to move
from 0 to 1in 5 seconds, you must set the frequency to 1/5. By setting the ixmode argument of
tablew to 1, you can use the phasor output directly as writing pointer. So this is an alternative
version of instrument 1 taken from the previous example:

instr 1; recording of a random frequency movement for 5 seconds, and playing it

kFreq randomi 400, 1000, 1; random frequency

asnd oscil3 .2, kFreq, giwave; play it
outs asnd, asSnd

;;record the k-signal with a phasor as index
prints "RECORDING!%n"

;Ccreate a writing pointer in the table,
;moving in 5 seconds from index @ to the end
kindx phasor 1/5
;write the k-signal
tablew kFreq, kindx, giFt, 1
endin

a-Rate Example

Recording an audio signal is quite similar to recording a control signal. You just need an a-signal
as input and also as index. The first example shows first the recording of a random audio signal.
If you have live audio input, you can then record your input for 5 seconds.

EXAMPLE 03D07.csd

<CsoundSynthesizer>
<CsOptions>

-iadc -odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz



sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giFt ftgen 0, 0, -5*sr, 2, 0; size for 5 seconds of recording audio
seed [¢]

instr 1 ;generating a band filtered noise for 5 seconds, and recording it
aNois rand 2

kCfreq randomi 200, 2000, 3; random center frequency
aFilt butbp aNois, kCfreq, kCfreq/10; filtered noise
aBal balance aFilt, aNois, 1; balance amplitude

outs aBal, aBal
;;record the audiosignal with a phasor as index

prints "RECORDING FILTERED NOISE!%n"

;Ccreate a writing pointer in the table,
;moving in 5 seconds from index © to the end
aindx phasor 1/5
;write the k-signal
tablew aBal, aindx, giFt, 1
endin

instr 2 ;read the values of the table and play it

prints "PLAYING FILTERED NOISE!%n"
aindx phasor 1/5
asnd table3 aindx, giFt, 1

outs asnd, aSnd

endin

instr 3 ;record live input

ktim timeinsts ; playing time of the instrument in seconds
prints "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv linseg 0, 1, 0, .01, 1, .5, 1, .01, ©
aBeep oscils .2, 600, O
outs aBeep*kBeepEnv, aBeep*kBeepEnv

;;record the audiosignal after 2 seconds
if ktim > 2 then
ain inch 1
printks "RECORDING LIVE INPUT!%Nn", 10
;Ccreate a writing pointer in the table,
;moving in 5 seconds from index @ to the end

aindx phasor 1/5
;write the k-signal
tablew ain, aindx, giFt, 1
endif
endin

instr 4 ;read the values from the table and play it

prints "PLAYING LIVE INPUT!%n"

aindx phasor 1/5

asnd table3 aindx, giFt, 1
outs asnd, aSnd

endin

</CsInstruments>

<CsScore>

i10e5

i265

i3 127

i4 205

</CsScore>

</CsoundSynthesizer>

HOW TO RETREIVE VALUES FROM A FUNCTION TABLE

There are two methods of reading table values. You can either use the table / tab opcodes,
which are universally usable, but need an index; or you can use an oscillator for reading a table
at k-rate or a-rate.

The table Opcode

The table opcode is quite similar in syntax to the tableiw/tablew opcode (which are explained
above). It's just its counterpart in reading values from a function table (instead of writing values
to it). So its output is either an i-, k- or a-signal. The main input is an index of the appropriate
rate (i-index for i-output, k-index for k-output, a-index for a-output). The other arguments are
as explained above for tableiw/tablew:

ires table indx, ifn [, ixmode] [, ixoff] [, iwrap]
kres table kndx, ifn [, ixmode] [, ixoff] [, iwrap]



ares table andx, ifn [, ixmode] [, ixoff] [, iwrap]

As table reading often requires interpolation between the table values - for instance if you read
k or a-values faster or slower than they have been written in the table - Csound offers two
descendants of table for interpolation: tablei interpolates linearly, whilst table3 performs cubic
interpolation (which is generally preferable but is computationally slightly more expensive).
Another variant is the tab_i / tab opcode which misses some features but may be preferable in
some situations. If you have any problems in reading non-power-of-two tables, give them a try.
They should also be faster than the table opcode, but you must take care: they include fewer
built-in protection measures than table, tablei and table3 and if they are given index values that
exceed the table size Csound will stop and report a performance error.

Examples of the use of the table opcodes can be found in the earlier examples in the How-To-
Write-Values... section.

Oscillators

Reading table values using an oscillator is standard if you read tables which contain one cycle of
a waveform at audio-rate. But actually you can read any table using an oscillator, either at a- or
at k-rate. The advantage is that you needn't create an index signal. You can simply specify the
frequency of the oscillator.

You should bear in mind that many of the oscillators in Csound will work only with power-of-two
table sizes. The poscil/poscil3 opcodes do not have this restriction and offer a high precision,
because they work with floating point indices, so in general it is recommended to use them.
Below is an example that demonstrates both reading a k-rate and an a-rate signal from a buffer
with poscil3 (an oscillator with a cubic interpolation):

EXAMPLE 03D08.csd
<CsoundSynthesizer>
<CsOptions>
-iadc -odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
; -- size for 5 seconds of recording control data
giControl ftgen 0, 0, -5*kr, 2, 0
; -- size for 5 seconds of recording audio data
giAudio ftgen 0, ©, -5*sr, 2, 0
giwave ftgen 0, 0, 2n10, 10, 1, .5, .3, .1; waveform for oscillator
seed [¢]

; -- ;recording of a random frequency movement for 5 seconds, and playing it
instr 1

kFreq randomi 400, 1000, 1; random frequency
asnd poscil .2, kFreq, giwave; play it
outs asnd, asSnd
;;record the k-signal with a phasor as index
prints "RECORDING RANDOM CONTROL SIGNAL!%n"

;create a writing pointer in the table,
;moving in 5 seconds from index @ to the end
kindx phasor 1/5
;write the k-signal
tablew kFreq, kindx, giControl, 1
endin

instr 2; read the values of the table and play it with poscil

prints "PLAYING CONTROL SIGNAL!%n"
kFreq poscil 1, 1/5, giControl
asnd poscil .2, kFreq, giwWave; play it
outs asnd, aSnd

endin

instr 3; record live input

ktim timeinsts ; playing time of the instrument in seconds
prints "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv linseg 0, 1, 0, .01, 1, .5, 1, .01, ©
aBeep oscils .2, 600, O
outs aBeep*kBeepEnv, aBeep*kBeepEnv

;;record the audiosignal after 2 seconds
if ktim > 2 then
ain inch 1
printks "RECORDING LIVE INPUT!%Nn", 10
;create a writing pointer in the table,



;moving in 5 seconds from index © to the end

aindx phasor 1/5
;write the k-signal
tablew ain, aindx, giAudio, 1
endif
endin

instr 4; read the values from the table and play it with poscil
prints "PLAYING LIVE INPUT!%n"
asnd poscil .5, 1/5, giAudio
outs asnd, asnd
endin

</CsInstruments>
<CsScore>

i10e5

i265

i3 127

i4205

</CsScore>
</CsoundSynthesizer>

SAVING THE CONTENTS OF A FUNCTION TABLE TO A FILE

A function table exists just as long as you run the Csound instance which has created it. If
Csound terminates, all the data is lost. If you want to save the data for later use, you must
write them to a file. There are several cases, depending on firstly whether you write at i-time or
at k-time and secondly on what kind of file you want to write to.

Writing a File in Csound's ftsave Format at i-Time or k-Time

Any function table in Csound can easily be written to a file by the ftsave (i-time) or ftsavek (k-
time) opcode. The use is very simple. The first argument specifies the filename (in double
quotes), the second argument chooses between a text format (non zero) or a binary format
(zero) to write, then you just give the number of the function table(s) to save.

For the following example you should end up with two textfiles in the same folder as your .csd:
"i-time_save.txt" saves function table 1 (a sine wave) at i-time; "k-time_save.txt" saves function
table 2 (a linear increment produced during the performance) at k-time.

EXAMPLE 03D09.csd

<CsoundSynthesizer>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giwave ftgen 1, ©, 2A7, 10, 1; sine with 128 points
giControl ftgen 2, ©, -kr, 2, 0; size for 1 second of recording control data
seed [¢]

instr 1; saving giwWave at i-time
ftsave "i-time_save.txt", 1, 1
endin

instr 2; recording of a line transition between 0 and 1 for one second
kline linseg 0, 1, 1
tabw kline, kline, giControl, 1
endin

instr 3; saving giWave at k-time
ftsave "k-time_save.txt", 1, 2
endin

</CsInstruments>
<CsScore>

i100

i201

i31.1

</CsScore>
</CsoundSynthesizer>

The counterpart to ftsave/ftsavek are the opcodes ftload/ftloadk. Using them you can load the
saved files into function tables.



Writing a Soundfile from a Recorded Function Table

If you have recorded your live-input to a buffer, you may want to save your buffer as a
soundfile. There is no opcode in Csound which does that, but it can be done by using a k-rate
loop and the fout opcode. This is shown in the next example, in instrument 2. First instrument 1
records your live input. Then instrument 2 writes the file "testwrite.wav" into the same folder as
your .csd. This is done at the first k-cycle of instrument 2, by reading again and again the table
values and writing them as an audio signal to disk. After this is done, the instrument is turned
off by executing the turnoff statement.

EXAMPLE 03D10.csd
<CsoundSynthesizer>
<CsOptions>
-i adc
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
Sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
; -- size for 5 seconds of recording audio data
giAudio ftgen 0, ©, -5*sr, 2, 0
instr 1 ;record live input
ktim timeinsts ; playing time of the instrument in seconds
prints "PLEASE GIVE YOUR LIVE INPUT AFTER THE BEEP!%n"
kBeepEnv linseg 0, 1, 0, .01, 1, .5, 1, .01, ©
aBeep oscils .2, 600, O
outs aBeep*kBeepEnv, aBeep*kBeepEnv

;;record the audiosignal after 2 seconds
if ktim > 2 then
ain inch 1
printks "RECORDING LIVE INPUT!%n", 10
;create a writing pointer in the table,
;moving in 5 seconds from index © to the end

aindx phasor 1/5
;write the k-signal
tablew ain, aindx, giAudio, 1
endif
endin

instr 2; write the giAudio table to a soundfile

Soutname = "testwrite.wav"; name of the output file
iformat = 14; write as 16 bit wav file
itablen = ftlen(giAudio); length of the table in samples
kent init 0; set the counter to 0 at start
loop:
kent = kent+ksmps; next value (e.g. 10 if ksmps=10)
andx interp kent-1; calculate audio index (e.g. from 0 to 9)
asig tab andx, giAudio; read the table values as audio signal
fout Soutname, iformat, asig; write asig to a file
if kent <= itablen-ksmps kgoto loop; go back as long there is something to do
turnoff ; terminate the instrument
endin
</CsInstruments>
<CsScore>
i1e7
i27 .1
</CsScore>

</CsoundSynthesizer>

This code can also be transformed in a User Defined Opcode. It can be found here.

Related Opcodes

ftgen: Creates a function table in the orchestra using any GEN Routine.

table / tablei / table3: Read values from a function table at any rate, either by direct indexing
(table), or by linear (tablei) or cubic (table3) interpolation. These opcodes provide many options
and are safe because of boundary check, but you may have problems with non-power-of-two
tables.



tab_i / tab: Read values from a function table at i-rate (tab_i), k-rate or a-rate (tab). Offer no
interpolation and less options than the table opcodes, but they work also for non-power-of-two
tables. They do not provide a boundary check, which makes them fast but also give the user the
resposability not reading any value off the table boundaries.

tableiw / tablew: Write values to a function table at i-rate (tableiw), k-rate and a-rate (tablew).
These opcodes provide many options and are safe because of boundary check, but you may
have problems with non-power-of-two tables.

tabw_i / tabw: Write values to a function table at i-rate (tabw_i), k-rate or a-rate (tabw). Offer
less options than the tableiw/tablew opcodes, but work also for non-power-of-two tables. They
do not provide a boundary check, which makes them fast but also give the user the resposability
not writing any value off the table boundaries.

poscil / poscil3: Precise oscillators for reading function tables at k- or a-rate, with linear (poscil) or
cubic (poscil3) interpolation. They support also non-power-of-two tables, so it's usually
recommended to use them instead of the older oscili/oscil3 opcodes. Poscil has also a-rate input
for amplitude and frequency, while poscil3 has just k-rate input.

oscili / oscil3: The standard oscillators in Csound for reading function tables at k- or a-rate, with
linear (oscili) or cubic (oscil3) interpolation. They support all rates for the amplitude and frequency
input, but are restricted to power-of-two tables. Particularily for long tables and low frequencies
they are not as precise as the poscil/poscil3 oscillators.

ftsave / ftsavek: Save a function table as a file, at i-time (ftsave) or k-time (ftsavek). This can be
a text file or a binary file, but not a soundfile. If you want to save a soundfile, use the User
Defined Opcode TableToSF.

ftload / ftloadk: Load a function table which has been written by ftsave/ftsavek.

line / linseg / phasor: Can be used to create index values which are needed to read/write k- or a-
signals with the table/tablew or tab/tabw opcodes.



17. TRIGGERING INSTRUMENT EVENTS

The basic concept of Csound from the early days of the program is still valent and fertile
because it is a familiar musical one. You create a set of instruments and instruct them to play
at various times. These calls of instrument instances, and their execution, are called "instrument
events".

This scheme of instruments and events can be instigated in a number of ways. In the classical
approach you think of an "orchestra" with a number of musicians playing from a "score", but you
can also trigger instruments using any kind of live input: from MIDI, from OSC, from the
command line, from a GUI (such as Csound's FLTK widgets or QuteCsound's widgets), from the
API (also used in QuteCsound's Live Event Sheet). Or you can create a kind of "master
instrument", which is always on, and triggers other instruments using opcodes designed for this
task, perhaps under certain conditions: if the live audio input from a singer has been detected to
have a base frequency greater than 1043 Hz, then start an instrument which plays a soundfile of
broken glass...

This chapter is about the various ways to trigger instrument events whether that be from the
score, by using MIDI, by using widgets, through using conditionals or by using loops.

ORDER OF EXECUTION

Whatever you do in Csound with instrument events, you must bear in mind the order of
execution that has been explained in the first chapter of this section about the Initialization and
Performance Pass: instruments are executed one by one, both in the initialization pass and in
each control cycle, and the order is determined by the instrument number. So if you have an
instrument which triggers another instrument, it should usually have the lower number. If, for
instance, instrument 10 calls instrument 20 in a certain control cycle, instrument 20 will execute
the event in the same control cycle. But if instrument 20 calls instrument 10, then instrument 10
will execute the event only in the next control cycle.

INSTRUMENT EVENTS FROM THE SCORE

This is the classical way of triggering instrument events: you write a list in the score section of a
.csd file. Each line which begins with an "i", is an instrument event. As this is very simple, and
examples can be found easily, let us focus instead on some additional features which can be
useful when you work in this way. Documentation for these features can be found in the Score
Statements section of the Canonical Csound Reference Manual. Here are some examples:

EXAMPLE 03E01.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giwav ftgen 0, 0, 2rn10, 10, 1, .5, .3, .1

instr 1
kFadout init 1
krel release ;returns "1" if last k-cycle
if krel == 1 && p3 < 0 then ;if so, and negative p3:
xtratim .5 ;give 0.5 extra seconds
kFadout linseg 1, .5, 0 ;and make fade out
endif
KEnv linseg 0, .01, p4, abs(p3)-.1, p4, .09, 0; normal fade out
aSig poscil kEnv*kFadout, p5, giwav
outs asSig, aSig
endin

</CsInstruments>
<CsScore>



t 0 120 ;set tempo to 120 beats per minute

i 1 0 1 .2 400 ;play instr 1 for one second

i 1 2 -10 .5 500 ;play instr 1 indefinetely (negative p3)
i -1 5 0 ;turn it off (negative p1)

; -- turn on instance 1 of instr 1 one sec after the previous start
i 1.1 AM+1 -10 .2 600

i 1.2 A+2 -10 .2 700 ;another instance of instr 1

i -1.2 A+2 0 ;turn off 1.2

; -- turn off 1.1 (dot = same as the same p-field above)

i -1.1 A+

s ;end of a section, so time begins from new at zero
i 1 1 1 .2 800

rs ;repeats the following line (until the next "s")
i 1 .25 .25 .2 900

s

v 2 ;lets time be double as long

i 1 [¢] 2 .2 1000

i 1 1 1 .2 1100

s

v 0.5 ;lets time be half as long

i 1 [¢] 2 .2 1200

i 1 1 1 .2 1300

s ;time is normal now again

i 1 [¢] 2 .2 1000

i 1 1 1 .2 900

s

; -- make a score loop (4 times) with the variable "LOOP"{4 LOOP

i 1 [0 + 4 * $LOOP.] 3 .2 [1200 - $LOOP. * 100]

i 1 [1 + 4 * $LOOP.] 2 . [1260 - $LOOP. * 200]

i 1 [2 + 4 * $LOOP.] 1 . [1200 - $LOOP. * 300]

}

e

</CsScore>

</CsoundSynthesizer>

Triggering an instrument with an indefinite duration by setting p3 to any negative value, and
stopping it by a negative pl value, can be an important feature for live events. If you turn
instruments off in this way you may have to add a fade out segment. One method of doing this
is shown in the instrument above with a combination of the release and the xtratim opcodes.
Also note that you can start and stop certain instances of an instrument with a floating point
number as pl.

USING MIDI NOTEON EVENTS

Csound has a particular feature which makes it very simple to trigger instrument events from a
MIDI keyboard. Each MIDI Note-On event can trigger an instrument, and the related Note-Off
event of the same key stops the related instrument instance. This is explained more in detail in
the chapter Triggering Instrument Instances in the MIDI section of this manual. Here, just a small
example is shown. Simply connect your MIDI keyboard and it should work.

EXAMPLE 03E02.csd
<CsoundSynthesizer>
<CsOptions>
-Ma -odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
Sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giSine ftgen 0, 0, 2n10, 10, 1
massign 0, 1; assigns all midi channels to instr 1
instr 1
iFreq cpsmidi ;gets frequency of a pressed key
iAmp ampmidi 8 ;gets amplitude and scales 0-8
iRatio random .9, 1.1 ;ratio randomly between 0.9 and 1.1
aTone foscili .1, iFreq, 1, iRatio/5, iAmp+1, giSine ;fm
aEnv linenr aTone, 0, .01, .01 ; avoiding clicks at the note-end
outs aeEnv, aEnv
endin
</CsInstruments>
<CsScore>
f 0 36000; play for 10 hours

e
</CsScore>



</CsoundSynthesizer>

USING WIDGETS

If you want to trigger an instrument event in realtime with a Graphical User Interface, it is
usually a "Button" widget which will do this job. We will see here a simple example; first
implemented using Csound's FLTK widgets, and then using QuteCsound's widgets.

FLTK Button

This is a very simple example demonstrating how to trigger an instrument using an ELTK button.
A more extended example can be found here.

EXAMPLE 03E03.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
Sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

; -- create a FLTK panel --
FLpanel "Trigger By FLTK Button", 300, 100, 100, 100
; -- trigger instr 1 (equivalent to the score line "i 1 0 1")k1, ih1
FLbutton "Push me!", ©, 0, 1, 150, 40, 10, 25, 0, 1, 0, 1
; -- trigger instr 2
k2, ih2 FLbutton "Quit", o0, o, 1, 80, 40, 200, 25, 0, 2, 0, 1
FLpanelEnd; end of the FLTK panel section

FLrun ; run FLTK
seed 0; random seed different each time
instr 1
idur random .5, 3; recalculate instrument duration
p3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 11th octave
idb random -18, -6; random values between -6 and -18 dB
asSig oscils ampdb(idb), cpsoct(ioct), ©
aEnv transeg 1, p3, -10, O
outs aSig*aEnv, aSig*aEnv
endin
instr 2
exitnow
endin
</CsInstruments>
<CsScore>
f 0 36000
e
</CsScore>

</CsoundSynthesizer>

Note that in this example the duration of an instrument event is recalculated when the
instrument is inititalized. This is done using the statement "p3 = i...". This can be a useful
technique if you want the duration that an instrument plays for to be different each time it is
called. In this example duration is the result of a random function'. The duration defined by the
FLTK button will be overwriten by any other calculation within the instrument itself at i-time.

QuteCsound Button

In QuteCsound, a button can be created easily from the submenu in a widget panel:



) Widgets

Create Slider
Create Label

1 Create Display
Create ScrollNumber
Create LineEdit |

1 Create SpinBox

¢ Create Knob

e Create Checkbox s’
Create Menu

ate instrul Create Controller

nstrument | Create Console

|

values be Create Graph th octave
om values | Create Scope 18 dB
psoct(ioct:

Cut
ig*aEnv Copy

Paste

Select all widgets
Duplicate Selected
Delete Selected
Clear all widgets

Properties

Store Preset
Recall Preset
New Preset

In the Properties Dialog of the button widget, make sure you have selected "event" as Type.
Insert a Channel name, and at the bottom type in the event you want to trigger - as you would
if writing a line in the score.

Button

x= 108 [} Y- 36 [J
width= 100 [3) Height= 30 (3]
| Channel name = [buttonl
Type [event % Value  1,000000 €]
| Push me!
Text
Image: [/ ()
event: [i101] ]
Apply Cancel

In your Csound code, you need nothing more than the instrument you want to trigger:

<CsoundSynthesizer>
<Csoptions>
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2
0dbfs = 1

seed 0; random seed different each time
instr 1
idur random .5, 3; calculate instrument duration
p3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 1Ith octave
idb random  -18, -6; random values between -6 and -18 dB
asig oscils  ampdb(idb), cpsoct(ioct), 0
aEnv transeg 1, p3, -10, 0
outs asig*aEnv, aSig*aEnv |© ladges
endin
</CsInstruments>
<CsScore>
0 36000
e
</csscore>

</CsoundSynthesizer>

For more information about QuteCsound, read the QuteCsound chapter in the 'Frontends' section
of this manual.

USING A REALTIME SCORE (LIVE EVENT SHEET)

Command Line With The -L stdin Option

If you use any .csd with the option "-L stdin" (and the -odac option for realtime output), you can
type any score line in realtime (sorry, this does not work for Windows). For instance, save this
.csd anywhere and run it from the command line:

EXAMPLE 03E04.csd

<CsoundSynthesizer>
<CsOptions>

-L stdin -odac
</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

seed 0; random seed different each time



instr 1

idur random .5, 3; calculate instrument duration
p3 = idur; reset instrument duration
ioct random 8, 11; random values between 8th and 11th octave
idb random -18, -6; random values between -6 and -18 dB
asig oscils ampdb(idb), cpsoct(ioct), ©
aEnv transeg 1, p3, -10,
outs aSig*aEnv, aSig*aEnv

endin
</CsInstruments>
<CsScore>
f 0 36000
e
</CsScore>

</CsoundSynthesizer>

If you run it by typing and returning a commandline like this ...

00 Terminal — bash — 80x24
Last login: Wed Jul 28 06:48:902 on console
g226025047:~ jh$ csound /Joachim/Csound/FLOSS/Kapitel®3/events®5.csd I

... you should get a prompt at the end of the Csound messages:

®00 Terminal — csound — 80x24
orchname: /var/folders/mk/mkpuhjKkEjOEgPnHAD3Wd++++TL/-Tmp-//csound-y4a0li.orc
scorename: /var/folders/mk/mkpuhjKkEj@EgPnHAD3wW@++++TI/-Tmp-//csound-1nbdha.sco
rtaudio: PortAudio module enabled ... using callback interface
rtmidi: PortMIDI module enabled
orch compiler:

instr 1
Elapsed time at end of orchestra compile: real: ©.003s, CPU: ©.002s
sorting score ...

. done
Elapsed time at end of score sort: real: 9.120s, (PU: ©.024s
Csound version 5.12 (float samples) Jun 4 2010
QdBFS level = 1.0
Seeding from current time 500726401
orch now loaded
stdmode = 00000002 Linefd = @
audio buffered in 1024 sample-frame blocks
PortAudio V19-devel (built Feb 12 2010 09:42:54)
PortAudio: available output devices:
©: Built-in Output
1: Gerd

PortAudio: selected output device 'Built-in Output’
writing 4096-byte blks of shorts to dac
SECTION 1:

If you now type the line "i 1 0 1" and press return, you should hear that instrument 1 has been
executed. After three times your messages may look like this:



®00 Terminal — csound — 80x24
sorting score ...
. done

Elapsed time at end of score sort: real: ©.120s, CPU: ©.024s
Csound version 5.12 {float samples) Jun 4 2010
QdBFS level = 1.0
Seeding from current time 500726401
orch now loaded
stdmode = @0000002 Linefd = @
audio buffered in 1024 sample-frame blocks
PortAudio v19-devel (built Feb 12 2010 29:42:54)
PortAudio: available output devices:

9: Built-in Output

1: Gera
PortAudio: selected output device 'Built-in Output’
writing 4096-byte blks of shorts to dac
SECTION 1:
ilel

rtevent: T 35.318 TT 35.318 M: 0.00000 ©.00000
new alloc for instr 1:
il1e1

rtevent: T 39.776 TT 39.776 M: 0.20663 0.20663
il1e1

rtevent: T 48.437 TT 48.437 M: 0.24186 ©.24186

QuteCsound's Live Event Sheet

In general, this is the method that QuteCsound uses and it is made available to the user in a
flexible environment called the Live Event Sheet. This is just a screenshot of the current
(QuteCsound 0.6.0) example of the Live Event Sheet in QuteCsound:

Saventt TT03 100 1103100 Wi 0.44557 " 0.43957 R
coald not find playing inatr 1.000000

Have a look in the QuteCsound frontend to see more of the possibilities of "firing" live
instrument events using the Live Event Sheet.

BY CONDITIONS

We have discussed first the classical method of triggering instrument events from the score
section of a .csd file, then we went on to look at different methods of triggering real time events
using MIDI, by using widgets, and by using score lines inserted live. We will now look at the
Csound orchestra itself and to some methods by which an instrument can internally trigger
another instrument. The pattern of triggering could be governed by conditionals, or by different
kinds of loops. As this "master" instrument can itself be triggered by a realtime event, you have
unlimited options available for combining the different methods.

Let's start with conditionals. If we have a realtime input, we may want to define a threshold, and
trigger an event

1. if we cross the threshold from below to above;
2. if we cross the threshold from above to below.

In Csound, this could be implemented using an orchestra of three instruments. The first
instrument is the master instrument. It receives the input signal and investigates whether that
signal is crossing the threshold and if it does whether it is crossing from low to high or from high
to low. If it crosses the threshold from low ot high the second instrument is triggered, if it



crosses from high to low the third instrument is triggered.

EXAMPLE 03E05.csd

<CsoundSynthesizer>
<CsOptions>

-iadc -odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

seed 0; random seed different each time

instr 1; master instrument

ichoose = p4; 1 = real time audio, 2 = random amplitude movement

ithresh = -12; threshold in dB

kstat init 1; 1 = under the threshold, 2 = over the threshold

; ;CHOOSE INPUT SIGNAL

if ichoose == 1 then

ain inch 1

else

kdB randomi -18, -6, 1

ain pinkish ampdb (kdB)

endif

; tMEASURE AMPLITUDE AND TRIGGER SUBINSTRUMENTS IF THRESHOLD IS CROSSED

afoll follow ain, .1; measure mean amplitude each 1/10 second

kfoll downsamp afoll

if kstat == 1 && dbamp(kfoll) > ithresh then; transition down->up
event "i", 2, 0, 1; call instr 2
printks "Amplitude = %.3f dB%n", 0, dbamp(kfoll)

kstat = 2; change status to "up"

elseif kstat == 2 && dbamp(kfoll) < ithresh then; transition up->down
event "i", 3, 0, 1; call instr 3
printks "Amplitude = %.3f dB%n", 0, dbamp(kfoll)

kstat = 1, change status to "down"

endif

endin

instr 2; triggered if threshold has been crossed from down to up
asig oscils .2, 500, 0
aenv transeg 1, p3, -10, ©
outs asig*aenv, asig*aenv
endin

instr 3; triggered if threshold has been crossed from up to down

asig oscils .2, 400, O
aenv transeg 1, p3, -10, ©
outs asig*aenv, asig*aenv
endin
</CsInstruments>
<CsScore>
i1 0 1000 2 ;change p4 to "1" for live input
e
</CsScore>

</CsoundSynthesizer>

USING I-RATE LOOPS FOR CALCULATING A POOL OF
INSTRUMENT EVENTS

You can perform a number of calculations at init-time which lead to a list of instrument events.
In this way you are producing a score, but inside an instrument. The score events are then
executed later.

Using this opportunity we can introduce the scoreline / scoreline_i opcode. It is quite similar to
the event / event_i opcode but has two major benefits:

e You can write more than one scoreline by using "{{" at the beginning and "}}" at the end.
e You can send a string to the subinstrument (which is not possible with the event opcode).

Let's look at a simple example for executing score events from an instrument using the scoreline
opcode

EXAMPLE 03E06.csd



<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
seed 0; random seed different each time
instr 1 ;master instrument with event pool
scoreline_i {{i 2 0 2 7.09
i2228.04
i2428.03
i2618.04}}
endin
instr 2 ;plays the notes
asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1, p3, 0, 0
outs asig*aenv, asig*aenv
endin
</CsInstruments>
<CsScore>
i107
e
</CsScore>

</CsoundSynthesizer>

With good right, you might say: "OK, that's nice, but | can also write scorelines in the score
itself!" That's right, but the advantage with the scoreline_i method is that you can render the
score events in an instrument, and then send them out to one or more instruments to execute
them. This can be done with the sprintf opcode, which produces the string for scoreline in an i-
time loop (see the chapter about control structures).

EXAMPLE 03E07.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giPch ftgen 0, 0, 4, -2, 7.09, 8.04, 8.03, 8.04
seed 0; random seed different each time
instr 1 ; master instrument with event pool
itimes = 7 ;number of events to produce
icnt = 0 ;counter
istart = [¢]
Slines = n
loop: ;start of the i-time loop
idur random 1, 2.9999 ;duration of each note:
idur = int(idur) ;either 1 or 2
itabndx random 0, 3.9999 ;index for the giPch table:
itabndx = int(itabndx) ;0-3
ipch table itabndx, giPch ;random pitch value from the table
Sline sprintf "i 2 %d %d %.2f\n", istart, idur, ipch ;new scoreline
Slines strcat Slines, Sline ;append to previous scorelines
istart = istart + idur ;recalculate start for next scoreline
loop_1t icnt, 1, itimes, loop ;end of the i-time loop
puts Slines, 1 ;print the scorelines
scoreline_i Slines ;execute them
iend = istart + idur ;calculate the total duration
p3 = iend ;set p3 to the sum of all durations
print p3 ;print it
endin

instr 2 ;plays the notes

asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1, p3, 0, ©
outs asig*aenv, asig*aenv

endin



</CsInstruments>

<CsScore>

i1 0 1 ;p3 is automatically set to the total duration
e

</CsScore>

</CsoundSynthesizer>

In this example, seven events have been rendered in an i-time loop in instrument 1. The result is
stored in the string variable Slines. This string is given at i-time to scoreline_i, which executes
them then one by one according to their starting times (p2), durations (p3) and other
parameters.

If you have many scorelines which are added in this way, you may run to Csound's maximal
string length. By default, it is 255 characters. It can be extended by adding the option "-
+max_str_len=10000" to Csound's maximum string length of 9999 characters. Instead of
collecting all score lines in a single string, you can also execute them inside the i-time loop. Also
in this way all the single score lines are added to Csound's event pool. The next example shows
an alternative version of the previous one by adding the instrument events one by one in the i-
time loop, either with event_i (instr 1) or with scoreline_i (instr 2):

EXAMPLE 03E08.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giPch ftgen 0, 0, 4, -2, 7.09, 8.04, 8.03, 8.04
seed 0; random seed different each time

instr 1; master instrument with event_i

itimes = 7; number of events to produce

icnt = 0; counter

istart = [¢]

loop: ;start of the i-time loop

idur random 1, 2.9999; duration of each note:

idur = int(idur); either 1 or 2

itabndx random 0, 3.9999; index for the giPch table:

itabndx = int(itabndx); 0-3

ipch table itabndx, giPch; random pitch value from the table
event_i "i", 3, istart, idur, ipch; new instrument event

istart = istart + idur; recalculate start for next scoreline
loop_1t icnt, 1, itimes, loop; end of the i-time loop

iend = istart + idur; calculate the total duration

p3 = iend; set p3 to the sum of all durations
print p3; print it

endin

instr 2; master instrument with scoreline_i

itimes = 7; number of events to produce

icnt = 0; counter

istart = [¢]

loop: ;start of the i-time loop

idur random 1, 2.9999; duration of each note:

idur = int(idur); either 1 or 2

itabndx random 0, 3.9999; index for the giPch table:

itabndx = int(itabndx); 0-3

ipch table itabndx, giPch; random pitch value from the table

Sline sprintf "i 3 %d %d %.2f", istart, idur, ipch; new scoreline
scoreline_i Sline; execute it
puts Sline, 1; print it

istart = istart + idur; recalculate start for next scoreline
loop_1t icnt, 1, itimes, loop; end of the i-time loop

iend = istart + idur; calculate the total duration

p3 = iend; set p3 to the sum of all durations
print p3; print it

endin

instr 3; plays the notes

asig pluck .2, cpspch(p4), cpspch(p4), 0, 1
aenv transeg 1, p3, O,
outs asig*aenv, asig*aenv
endin

</CsInstruments>



<CsScore>

i1e1

i2141

e

</CsScore>
</CsoundSynthesizer>

USING TIME LOOPS

As discussed above in the chapter about control structures, a time loop can be built in Csound
either with the timout opcode or with the metro opcode. There were also simple examples for
triggering instrument events using both methods. Here, a more complex example is given: A
master instrument performs a time loop (choose either instr 1 for the timout method or instr 2
for the metro method) and triggers once in a loop a subinstrument. The subinstrument itself
(instr 10) performs an i-time loop and triggers several instances of a sub-subinstrument (instr
100). Each instance performs a partial with an independent envelope for a bell-like additive
synthesis.

EXAMPLE 03E09.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1
seed ¢}

instr 1; time loop with timout. events are triggered by event_i (i-rate)

loop:

idurloop random 1, 4; duration of each loop
timout 0, idurloop, play
reinit loop

play:

idurins random 1, 5; duration of the triggered instrument
event_i "i", 10, 0, idurins; triggers instrument 10

endin

instr 2; time loop with metro. events are triggered by event (k-rate)

kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq

if kTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 10

event "i", 10, 0, kdur; call instr 10

kfreq random .25, 1, set new value for trigger frequency
endif

endin

instr 10; triggers 8-13 partials

inumparts random 8, 14
inumparts = int(inumparts); 8-13 as integer
ibasoct random 5, 10; base pitch in octave values
ibasfreq = cpsoct(ibasoct)
ipan random .2, .8, random panning between left (©) and right (1)
icnt = 0; counter
loop:
event_i "i", 100, O, p3, ibasfreq, icnt+1, inumparts, ipan

loop_1t icnt, 1, inumparts, loop
endin

instr 100; plays one partial

ibasfreq = p4; base frequency of sound mixture

ipartnum = p5; which partial is this (1 - N)

inumparts = p6; total number of partials

ipan = p7; panning

ifreqgen = ibasfreq * ipartnum; general frequency of this partial
ifreqdev random -10, 10; frequency deviation between -10% and +10%

; -- real frequency regarding deviation

ifreq = ifreqgen + (ifreqdev*ifreqgen)/100

ixtratim random 0, p3; calculate additional time for this partial

p3 = p3 + ixtratim; new duration of this partial

imaxamp = 1/inumparts; maximum amplitude

idbdev random -6, 0; random deviation in dB for this partial

iamp = imaxamp * ampdb(idbdev-ipartnum); higher partials are softer

ipandev random -.1, .1; panning deviation



ipan = ipan + ipandev

aEnv transeg 0, .005, 0, iamp, p3-.005, -10, 0O
aSine poscil aEnv, ifreq, giSine
aL, aR pan2 aSine, ipan
outs aL, aR
prints "ibasfreq = %d, ipartial = %d, ifreq = %d%n",
ibasfreq, ipartnum, ifreq
endin
</CsInstruments>
<CsScore>
i1 0 300 ;try this, or the next line (or both)
;12 0 300
</CsScore>

</CsoundSynthesizer>

LINKS AND RELATED OPCODES

Links

A great collection of interactive examples with FLTK widgets by lain McCurdy can be found here.
See particularily the "Realtime Score Generation" section. Recently, the collection has been
ported to QuteCsound by René Jopi, and is part of QuteCsound's example menu.

An extended example for calculating score events at i-time can be found in the Re-Generation of
Stockhausen's "Studie II" by Joachim Heintz (also included in the QuteCsound Examples menu).

Related Opcodes

event_i / event: Generate an instrument event at i-time (event_i) or at k-time (event). Easy to
use, but you cannot send a string to the subinstrument.

scoreline_i / scoreline: Generate an instrument at i-time (scoreline_i) or at k-time (scoreline). Like
event_i/event, but you can send to more than one instrument but unlike event_i/event you can
send strings. On the other hand, you must usually preformat your scoreline-string using sprintf.

sprintf / sprintfk: Generate a formatted string at i-time (sprintf) or k-time (sprintfk), and store it
as a string-variable.

-+max_str_len=10000: Option in the "CsOptions" tag of a .csd file which extend the maximum
string length to 9999 characters.

massign: Assigns the incoming MIDI events to a particular instrument. It is also possible to
prevent any assigment by this opcode.

cpsmidi / ampmidi: Returns the frequency / velocity of a pressed MIDI key.
release: Returns "1" if the last k-cycle of an instrument has begun.
xtratim: Adds an additional time to the duration (p3) of an instrument.

turnoff / turnoff2: Turns an instrument off; either by the instrument itself (turnoff), or from
another instrument and with several options (turnoff2).

-p3 / -pl: A negative duration (p3) turns an instrument on "indefinitely"; a negative instrument
number (pl) turns this instrument off. See the examples at the beginning of this chapter.

-L stdin: Option in the "CsOptions" tag of a .csd file which lets you type in realtime score events.

timout: Allows you to perform time loops at i-time with reinitalization passes.

metro: Outputs momentary 1s with a definable (and variable) frequency. Can be used to perform
a time loop at k-rate.

follow: Envelope follower.




18 USER DEFINED OPCODES

Opcodes are the core units of everything that Csound does. They are like little machines that do
a job, and programming is akin to connecting these little machines to perform a larger job. An
opcode usually has something which goes into it: the inputs or arguments, and usually it has
something which comes out of it: the output which is stored in one or more variables. Opcodes
are written in the programming language C (that is where the name "Csound" comes from). If
you want to create a new opcode in Csound, you must write it in C. How to do this is described
in the Extending Csound chapter of this manual, and is also described in the relevant chapter of
the Canonical Csound Reference Manual.

There is, however, a way of writing your own opcodes in the Csound Language itself. The
opcodes which are written in this way, are called User Defined Opcodes or "UDO"s. A UDO
behaves in the same way as a standard opcode: it has input arguments, and usually one or more
output variables. They run at i-time or at k-time. You use them as part of the Csound Language
after you have defined and loaded them.

User Defined Opcodes have many valuable properties. They make your instrument code clearer
because they allow you to create abstractions of blocks of code. Once a UDO has been defined
it can be recalled and repeated many times within an orchestra, each repetition requiring only a
single line of code. UDOs allow you to build up your own library of functions you need and return
to frequently in your work. In this way, you build your own Csound dialect within the Csound
Language. UDOs also represent a convenient format with which to share your work in Csound
with other users.

This chapter explains, initially with a very basic example, how you can build your own UDOs, and
what options they offer. Following this, the practice of loading UDOs in your .csd file is shown,
followed by some tips in regard to some unique capabilities of UDOs. Before the "Links And
Related Opcodes" section at the end, some examples are shown for different User Defined
Opcode definitions and applications.

TRANSFORMING CSOUND INSTRUMENT CODE TO A USER
DEFINED OPCODE

Writing a User Defined Opcode is actually very easy and straightforward. It mainly means to
extract a portion of usual Csound instrument code, and put it in the frame of a UDO. Let's start
with the instrument code:

EXAMPLE 03F01.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giSine ftgen 0, 0, 2n10, 10, 1

seed [¢]

instr 1
aDel init 0; initialize delay signal
iFb = .7, feedback multiplier
asnd rand .2; white noise
kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asnd * ampdb(kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson asnd, kFiltFq, kFiltFq/5; applied as filter center frequency
aFilt balance aFilt, asSnd; bring aFilt to the volume of aSnd
abDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB)
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal

alut = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it



outs alut, aoOut
endin

</CsInstruments>
<CsScore>

il0 60

</CsScore>
</CsoundSynthesizer>

This is a filtered noise, and its delay, which is fed back again into the delay line at a certain ratio
iFb. The filter is moving as kFiltFq randomly between 100 and 1000 Hz. The volume of the filtered
noise is moving as kdB randomly between -18 dB and -6 dB. The delay time moves between 0.1
and 0.8 seconds, and then both signals are mixed together.

Basic Example

If this signal processing unit is to be transformed into a User Defined Opcode, the first question
is about the extend of the code that will be encapsulated: where the UDO code will begin and
end? The first solution could be a radical, and possibly bad, approach: to transform the whole
instrument into a UDO.

EXAMPLE 03F02.csd

<CsoundSynthesizer>
<CsOptions>

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1
seed [¢]

opcode FiltFb, 0, 0

aDel init 0; initialize delay signal
iFb = .7, feedback multiplier
asnd rand .2; white noise
kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asnd * ampdb(kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson asnd, kFiltFq, kFiltFq/5; applied as filter center frequency
aFilt balance aFilt, asSnd; bring aFilt to the volume of aSnd
abDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB)
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
aout = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
outs a0ut, aOut

endop

instr 1
FiltFb

endin
</CsInstruments>
<CsScore>
i1l0 60
</CsScore>

</CsoundSynthesizer>

Before we continue the discussion about the quality of this transormation, we should have a look
at the syntax first. The general syntax for a User Defined Opcode is:

opcode name, outtypes, intypes

endop

Here, the name of the UDO is FiltFb. You are free to use any name, but it is suggested that
you begin the name with a capital letter. By doing this, you avoid duplicating the name of most
of the pre-existing opcodes (ELTK and STK opcodes begin with capital letters) which normally
start with a lower case letter. As we have no input arguments and no output arguments for this
first version of FiltFb, both outtypes and intypes are set to zero. Similar to the instr ... endin
block of a normal instrument definition, for a UDO the opcode ... endop keywords begin and

end the UDO definition block. In the instrument, the UDO is called like a normal opcode by using
its name, and in the same line the input arguments are listed on the right and the output



arguments on the left. In the previous a example, 'FiltFb" has no input and output arguments so it
is called by just using its name:

instr 1
FiltFb
endin

Now - why is this UDO more or less useless? It achieves nothing, when compared to the original
non UDO version, and in fact loses some of the advantages of the instrument defined version.
Firstly, it is not advisable to include this line in the UDO:

outs a0ut, aOut

This statement writes the audio signal aOut from inside the UDO to the output device. Imagine
you want to change the output channels, or you want to add any signal modifier after the
opcode. This would be impossible with this statement. So instead of including the 'outs' opcode,
we give the FiltFb UDO an audio output:

xout aout

The xout statement of a UDO definition works like the "outlets" in PD or Max, sending the
result(s) of an opcode back to the caller instrument.

Now let us consider the UDQO's input arguments, choose which processes should be carried out
within the FiltFb unit, and what aspects would offer greater flexibility if controllable from outside
the UDO. First, the aSnd parameter should not be restricted to a white noise with amplitude
0.2, but should be an input (like a "signal inlet" in PD/Max). This is implemented using the line:

asnd xin

Both the output and the input type must be declared in the first line of the UDO definition,

whether they are i-, k- or a-variables. So instead of "opcode FiltFb, 0, 0" the statement has
changed now to "opcode FiltFb, a, a", because we have both input and output as a-variable.

The UDO is now much more flexible and logical: it takes any audio input, it performs the filtered
delay and feedback processing, and returns the result as another audio signal. In the next
example, instrument 1 does exactly the same as before. Instrument 2 has live input instead.

EXAMPLE 03F03.csd
<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giSine ftgen 0, 0, 2n10, 10, 1

seed [¢]

opcode FiltFb, a, a
asnd xin
aDel init 0; initialize delay signal
iFb = .7; feedback multiplier
kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asnd * ampdb(kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
aFilt reson asnd, kFiltFq, kFiltFq/5; applied as filter center frequency
aFilt balance aFilt, aSnd; bring aFilt to the volume of aSnd
abDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aDel vdelayx aFilt + iFb*aDel, aDelTm, 1, 128; variable delay
kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB)
kdbDel randomi -12, 0, 1; ... for the filtered and the delayed signal
alut = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it

xout aout
endop

instr 1; white noise input

asnd rand .2
aout FiltFb asnd
outs alut, aoOut
endin
instr 2; live audio input
asnd inch 1; input from channel 1



aout FiltFb asnd

outs aout, aOut
endin
</CsInstruments>
<CsScore>
i1 0 60 ;change to i 2 for live audio input
</CsScore>

</CsoundSynthesizer>

Is There An Optimal Design For A User Defined Opcode?

Is this now the optimal version of the FiltFb User Defined Opcode? Obviously there are other
parts of the opcode definiton which could be controllable from outside: the feedback multiplier
iFb, the random movement of the input signal kdB, the random movement of the filter
frequency kFiltFq, and the random movements of the output mix kdbSnd and kdbDel. Is it
better to put them outside of the opcode definition, or is it better to leave them inside?

There is no general answer. It depends on the degree of abstraction you desire or you prefer to
relinquish. If you are working on a piece for which all of the parameters settings are already
defined as required in the UDO, then control from the caller instrument may not be necessary .
The advantage of minimizing the number of input and output arguments is the simplification in
using the UDO. The more flexibility you require from your UDO however, the greater the number
of input arguments that will be required. Providing more control is better for a later reusability,
but may be unnecessarily complicated

Perhaps it is the best solution to have one abstract definition which performs one task, and to
create a derivative - also as UDO - fine tuned for the particular project you are working on. The
final example demonstrates the definition of a general and more abstract UDO FiltFb, and its
various applications: instrument 1 defines the specifications in the instrument itself; instrument 2
uses a second UDO Opusi23_FiltFb for this purpose; instrument 3 sets the general FiltFb in a new
context of two varying delay lines with a buzz sound as input signal.

EXAMPLE 03F04.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1
seed [c]

opcode FiltFb, aa, akkkia
; -- DELAY AND FEEDBACK OF A BAND FILTERED INPUT SIGNAL --
;input: asnd = input sound
; kFb = feedback multiplier (0-1)
; kFiltFq: center frequency for the reson band filter (Hz)
; kQ = band width of reson filter as kFiltFq/kQ
; iMaxDel = maximum delay time in seconds
; abDelTm = delay time
;output: aFilt = filtered and balanced aSnd
; aDel = delay and feedback of aFilt

asnd, kFb, kFiltFq, kQ, iMaxDel, aDelTm xin
0]

aDel init
aFilt reson asnd, kFiltFq, kFiltFq/kQ
aFilt balance aFilt, aSnd
aDel vdelayx aFilt + kFb*aDel, aDelTm, iMaxDel, 128; variable delay
xout aFilt, aDel
endop

opcode Opus123_FiltFb, a, a
;;the udo FiltFb here in my opus 123 :)
;input = asSnd
;output = filtered and delayed asSnd in different mixtures

asnd xin

kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asnd * ampdb(kdB); applied as dB to noise

kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
iQ 5

iFb = .7, feedback multiplier



abDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb asnd, iFb, kFiltFq, iQ, 1, aDelTm

kdbFilt randomi -12, 0, 1; two random movements between -12 and 0 (dB)
kdbDel randomi -12, 0, 1; ... for the noise and the delay signal
alut = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
xout aout
endop

instr 1; well known context as instrument

asnd rand .2
kdB randomi -18, -6, .4; random movement between -18 and -6
asnd = asnd * ampdb(kdB); applied as dB to noise
kFiltFq randomi 100, 1000, 1; random movement between 100 and 1000
iQ = 5
iFb = .7, feedback multiplier
abDelTm randomi .1, .8, .2; random movement between .1 and .8 as delay time
aFilt, aDel FiltFb asnd, iFb, kFiltFg, iQ, 1, aDelTm
kdbFilt randomi -12, 0, 1; two random movements between -12 and @ (dB)
kdbDel randomi -12, 0, 1; ... for the noise and the delay signal
aout = aFilt*ampdb(kdbFilt) + aDel*ampdb(kdbDel); mix it
alut linen aout, .1, p3, 3
outs aout, aOut
endin

instr 2; well known context UDO which embeds another UDO

asnd rand .2
aout Opus123_FiltFb aSnd
aout linen aout, .1, p3, 3
outs alut, aoOut
endin

instr 3; other context: two delay lines with buzz

kFreq randomh 200, 400, .08; frequency for buzzer

asnd buzz .2, kFreq, 100, giSine; buzzer as aSnd
kFiltFq randomi 100, 1000, .2; center frequency

aDelTm1i randomi .1, .8, .2; time for first delay line
aDelTm2 randomi .1, .8, .2; time for second delay line
kFb1 randomi .8, 1, .1; feedback for first delay line
kFb2 randomi 8, 1, .1; feedback for second delay line

a0, aDell FiltFb asnd, kFb1, kFiltFq, 1, 1, aDelTml; delay signal 1
a0, aDel2 FiltFb asnd, kFb2, kFiltFq, 1, 1, abelTm2; delay signal 2
aDell linen abell, .1, p3, 3
aDel2 linen abel2, .1, p3, 3
outs aDell, aDel2
endin

</CsInstruments>
<CsScore>

i10 30

i2 31 30

i 3 62 120
</CsScore>
</CsoundSynthesizer>

The good thing about the different possibilities of writing a more specified UDO, or a more
generalized: You needn't decide this at the beginning of your work. Just start with any
formulation you find useful in a certain situation. If you continue and see that you should have
some more parameters accessible, it should be easy to rewrite the UDO. Just be careful not to
confuse the different versions you create. Use names like Faulty1, Faulty2 etc. instead of
overwriting Faulty. Making use of extensive commenting when you initially create the UDO will
make it easier to adapt the UDO at a later time. What are the inputs (including the
measurement units they use such as Hertz or seconds)? What are the outputs? - How you do
this, is up to you and depends on your style and your preference.

HOW TO USE THE USER DEFINED OPCODE FACILITY IN
PRACTICE

In this section, we will address the main points of using UDOs: what you must bear in mind when
loading them, what special features they offer, what restrictions you must be aware of and how
you can build your own language with them.

Loading User Defined Opcodes In The Orchestra Header

As can be seen from the examples above, User Defined Opcodes must be defined in the
orchestra header (which is sometimes called "instrument 0"). Note that your opcode definitions
must be the last part of all your orchestra header statements. The following usage results in an
error, even though it is probably fair to regard Csound as intolerant in doing so - this intolerance



may be removed in future versions of Csound.

EXAMPLE 03F05.csd

<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

opcode FiltFb, aa, akkkia
; -- DELAY AND FEEDBACK OF A BAND FILTERED INPUT SIGNAL --
;input: aSnd = input sound
; kFb = feedback multiplier (0-1)

kFiltFq: center frequency for the reson band filter (Hz)
kQ = band width of reson filter as kFiltFq/kQ

iMaxDel = maximum delay time in seconds

abDelTm = delay time
output: aFilt = filtered and balanced aSnd

aDel = delay and feedback of aFilt

’
’
’
’
’
’

asnd, kFb, kFiltFg, kQ, iMaxDel, aDelTm xin
[¢]

aDel init

aFilt reson asnd, kFiltFq, kFiltFq/kQ

aFilt balance aFilt, asSnd

aDel vdelayx aFilt + kFb*aDel, aDelTm, iMaxDel, 128; variable delay
xout aFilt, aDel

endop

giSine ftgen 0, 0, 2n10, 10, 1
seed [¢]

instr 1

Csound will complain about "misplaced opcodes", which means that the ftgen and the seed
statement must be before the opcode definitions.

Loading A Set Of User Defined Opcodes

You can load as many User Defined Opcodes into a Csound orchestra as you wish. As long as
they do not depend on each other, their order is arbitrarily. If UDO OpusI23_FiltFb uses the UDO
FiltFb for its definition (see the example above), you must first load FiltFb, and then
OpusI23_FiltFb. If not, you will get an error like this:

orch compiler:

opcode Opusl123_FiltFb a a

error: no legal opcode, line 25:

aFilt, aDel FiltFb asnd, iFb, kFiltFq, iQ, 1, aDelTm

Loading By An #include File

Definitions of User Defined Opcodes can also be loaded into a .csd file by an "#include"
statement. What you must do is the following:

1. Save your opcode definitions in a plain text file, for instance "MyOpcodes.txt".
2. If this file is in the same directory as your .csd file, you can just call it by the statement:

#include "MyOpcodes.txt"

3. If "MyOpcodes.txt" is in a different directory, you must call it by the full path name, for
instance

#include "/Users/me/Documents/Csound/UDO/MyOpcodes.txt"

As always, make sure that the "#include" statement is the last one in the orchestra header, and
that the logical order is accepted if one opcode depends on another.

If you work with User Defined Opcodes a lot, and build up a collection of them, the #include
feature allows you easily import several or all of them to your .csd file.

The setksmps Feature

The ksmps assignment in the orchestra header cannot be changed during the performance of a
.csd file. But in a User Defined Opcode you have the unique possibility of changing this value by a



local assignment. If you use a setksmps statement in your UDO, you can have a locally smaller
value for the number of samples per control cycle in the UDO. In the following example, the print
statement in the UDO prints ten times compared to one time in the instrument, because ksmps
in the UDO is 10 times smaller:

EXAMPLE 03F06.csd

<CsoundSynthesizer>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 44100 ;very high because of printing

opcode Faster, 0, 0
setksmps 4410 ;local ksmps is 1/10 of global ksmps
printks "UDO print!%n", ©

endop

instr 1
printks "Instr print!%n", © ;print each control period (once per second)
Faster ;print 10 times per second because of local ksmps

endin

</CsInstruments>
<CsScore>

i102

</CsScore>
</CsoundSynthesizer>

Default Arguments

For i-time arguments, you can use a simple feature to set default values:

e "o" (instead of "i") defaults to 0
e "p" (instead of "i") defaults to 1
e "j" (instead of "i") defaults to -1

So you can omit these arguments - in this case the default values will be used. If you give an
input argument instead, the default value will be overwritten:

EXAMPLE 03F07.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

opcode Defaults, iii, opj
ia, ib, ic xin
xout ia, ib, ic

endop
instr 1
ia, ib, ic Defaults
print ia, ib, ic
ia, ib, ic Defaults 10
print ia, ib, ic
ia, ib, ic Defaults 10, 100
print ia, ib, ic
ia, ib, ic Defaults 10, 100, 1000
print ia, ib, ic
endin
</CsInstruments>
<CsScore>
i100
</CsScore>

</CsoundSynthesizer>
Recursive User Defined Opcodes

Recursion means that a function can call itself. This is a feature which can be useful in many
situations. Also User Defined Opcodes can be recursive. You can do many things with a recursive
UDO which you cannot do in any other way; at least not in a simliarly simple way. This is an
example of generating eight partials by a recursive UDO. See the last example in the next
section for a more musical application of a recursive UDO.

EXAMPLE 03F08.csd



<CsoundSynthesizer>
<CsOptions>

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

opcode Recursion, a, iip
;input: frequency, number of partials, first partial (default=1)
ifreq, inparts, istart xin

iamp = 1/inparts/istart ;decreasing amplitudes for higher partials
if istart < inparts then ;if inparts have not yet reached
acall Recursion ifreq, inparts, istart+l ;call another instance of this UDO
endif
aout oscils iamp, ifreq*istart, 0 ;execute this partial
aout = aout + acall ;add the audio signals
xout aout
endop
instr 1
amix Recursion 400, 8 ;8 partials with a base frequency of 400 Hz
aout linen amix, .01, p3, .1
outs aout, aout
endin
</CsInstruments>
<CsScore>
i1e1
</CsScore>

</CsoundSynthesizer>

EXAMPLES

We will focus here on some examples which will hopefully show the wide range of User Defined
Opcodes. Some of them are adaptions of examples from previous chapters about the Csound
Syntax. Much more examples can be found in the User-Defined Opcode Database, editied by
Steven Yi.

Play A Mono Or Stereo Soundfile

Csound is often very strict and gives errors where other applications might 'turn a blind eye'.
This is also the case if you read a soundfile using one of Csound's opcodes: soundin, diskin or
diskin2. If your soundfile is mono, you must use the mono version, which has one audio signal as
output. If your soundfile is stereo, you must use the stereo version, which outputs two audio
signals. If you want a stereo output, but you happen to have a mono soundfile as input, you will
get the error message:

INIT ERROR in ...: number of output args inconsistent with number
of file channels

It may be more useful to have an opcode which works for both, mono and stereo files as input.
This is a ideal job for a UDO. Two versions are possible: FilePlay1 returns always one audio signal
(if the file is stereo it uses just the first channel), FilePlay2 returns always two audio signals (if
the file is mono it duplicates this to both channels). We can use the default arguments to make
this opcode behave exactly as diskin2:

EXAMPLE 03F09.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sSr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

opcode FilePlayl, a, Skoooooo
;gives mono output regardless your soundfile is mono or stereo
; (if stereo, just the first channel is used)
;see diskin2 page of the csound manual for information about the input arguments
Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit xin



ichn filenchnls Sfil

if ichn == 1 then

aout diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,
ibufsize, iskipinit

else

aout, a® diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,
ibufsize, iskipinit

endif

xout aout
endop

opcode FilePlay2, aa, Skoooooo
;gives stereo output regardless your soundfile is mono or stereo
;see diskin2 page of the csound manual for information about the input arguments
Sfil, kspeed, iskip, iloop, iformat, iwsize, ibufsize, iskipinit xin
ichn filenchnls Sfil
if ichn == 1 then

aL diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,
ibufsize, iskipinit
aR = aL
else
aL, aR diskin2 Sfil, kspeed, iskip, iloop, iformat, iwsize,
ibufsize, iskipinit
endif
xout aL, aR
endop
instr 1
aMono FilePlayl "fox.wav", 1
outs aMono, aMono
endin
instr 2
aL, aR FilePlay2 "fox.wav", 1
outs aL, aR
endin
</CsInstruments>
<CsScore>
ii104
i244
</CsScore>

</CsoundSynthesizer>
Change The Content Of A Function Table

In example 03Cll.csd, a function table has been changed at performance time, once a second, by
random deviations. This can be easily transformed to a User Defined Opcode. It takes the
function table variable, a trigger signal, and the random deviation in percent as input. In each
control cycle where the trigger signal is "1", the table values are read. The random deviation is
applied, and the changed values are written again into the table. Here, the tab/tabw opcodes are
used to make sure that also non-power-of-two tables can be used.

EXAMPLE 03F10.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 441

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 256, 10, 1; sine wave
seed 0; each time different seed

opcode TabDirtk, 0, ikk
;"dirties" a function table by applying random deviations at a k-rate trigger
;input: function table, trigger (1 = perform manipulation),
;deviation as percentage
ift, ktrig, kperc xin
if ktrig == 1 then ;just work if you get a trigger signal

kndx = [¢]

loop:

krand random -kperc/100, kperc/100

kval tab kndx, ift; read old value

knewval = kval + (kval * krand); calculate new value
tabw knewval, kndx, giSine; write new value

loop_1t kndx, 1, ftlen(ift), loop; loop construction



endif

endop
instr 1
kTrig metro 1, .00001 ;trigger signal once per second
TabDirtk giSine, kTrig, 10
asig poscil .2, 400, giSine
outs aSig, aSig
endin
</CsInstruments>
<CsScore>
i1010
</CsScore>

</CsoundSynthesizer>

Of course you can also change the content of a function table at init-time. The next example
permutes a series of numbers randomly each time it is called. For this purpose, first the input
function table iTabin is copied as iCopy. This is necessary because we do not want to change
iTabin in any way. Next a random index in iCopy is created and the value at this location in
iTabin is written at the beginning of iTabout, which contains the permuted results. At the end of
this cycle, each value in iCopy which has a larger index than the one which has just been read, is
shifted one position to the left. So now iCopy has become one position smaller - not in table size
but in the number of values to read. This procedure is continued until all values from iCopy are
reflected in iTabout:

EXAMPLE 03F1l.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Joachim Heintz

givals ftgen 0, ® -12, -2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
seed 0; each time different seed

opcode TabPermRand_i, i, i
;permuts randomly the values of the input table
;and creates an output table for the result

iTabin xin
itablen = ftlen(iTabin)
iTabout ftgen 0, 0, -itablen, 2, 0 ;create empty output table
iCopy ftgen 0, 0, -itablen, 2, 0 ;create empty copy of input table
tableicopy iCopy, iTabin ;write values of iTabin into iCopy
icplen init itablen ;number of values in iCopy
indxwt init 0 ;index of writing in iTabout
loop:
indxrd random 0, icplen - .0001; random read index in iCopy
indxrd = int(indxrd)
ival tab_i indxrd, iCopy; read the value
tabw_1i ival, indxwt, iTabout; write it to iTabout

; -- shift values in iCopy larger than indxrd one position to the left
shift:
if indxrd < icplen-1 then ;if indxrd has not been the last table value

ivalshft tab_i indxrd+1, iCopy ;take the value to the right

tabw_1i ivalshft, indxrd, iCopy ;...and write it to indxrd position
indxrd = indxrd + 1 ;then go to the next position

igoto shift ;return to shift and see if there is anything left to
do
endif
indxwt = indxwt + 1 ;increase the index of writing in iTabout

loop_gt icplen, 1, 0, loop ;loop as long as there is ;
;a value in iCopy
ftfree iCopy, 0 ;delete the copy table

xout iTabout ;return the number of iTabout
endop
instr 1
iPerm TabPermRand_i givals ;perform permutation
;print the result
indx = [¢]
Sres = "Result:"
print:
ival tab_i indx, iPerm
Sprint sprintf "%s %d", Sres, ival
Sres = Sprint
loop_1t indx, 1, 12, print
puts Sres, 1
endin

instr 2; the same but performed ten times
icnt = [¢]
loop:



iPerm TabPermRand_i givals ;perform permutation
;print the result

indx = [¢]
Sres = "Result:"
print:
ival tab_i indx, iPerm
Sprint sprintf "%s %d", Sres, ival
Sres = Sprint
loop_1t indx, 1, 12, print
puts Sres, 1
loop_1t icnt, 1, 10, loop
endin
</CsInstruments>
<CsScore>
i100
i200
</CsScore>

</CsoundSynthesizer>
Print The Content Of A Function Table

There is no opcode in Csound for printing the contents of a function table, but one can be
created as a UDO. Again a loop is needed for checking the values and putting them into a string
which can then be printed. In addition, some options can be given for the print precision and for
the number of elements in a line.

EXAMPLE 03F12.csd

<CsoundSynthesizer>
<CsOptions>

-ndm@ -+max_str_len=10000
</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

gitab ftgen i, e, -7, -2, 0, 1, 2, 3, 4,5, 6
gisin ftgen 2, 6, 128, 10, 1

opcode TableDumpSimp, 0, ijo
;prints the content of a table in a simple way
;input: function table, float precision while printing (default = 3),
;parameters per row (default = 10, maximum = 32)
ifn, iprec, ippr xin

iprec = (iprec == -1 ? 3 : iprec)
ippr = (ippr == 0 ? 10 : ippr)
iend = ftlen(ifn)
indx = [¢]
Sformat sprintf "%%.%df\t", iprec
sdump - I
loop:
ival tab_i indx, ifn
Snew sprintf Sformat, ival
Sdump strcat Sdump, Snew
indx = indx + 1
imod = indx % ippr
if imod == 0 then
puts Sdump, 1
Sdump = "
endif
if indx < iend igoto loop
puts Sdump, 1
endop
instr 1
TableDumpSimp p4, p5, p6
prints "%n"
endin
</CsInstruments>
<CsScore>
;i1 st dur ftab prec ppr
i1 [} [0} 1 -1
i1 . 1 [¢]
i1 . . 2 3 10
i1 2 6 32
</CsScore>

</CsoundSynthesizer>

A Recursive User Defined Opcode For Additive Synthesis



In the last example of the chapter about Triggering Instrument Events a number of partials were
synthesized, each with a random frequency deviation of up to 10% compared to precise
harmonic spectrum frequencies and a unique duration for each partial. This can also be written
as a recursive UDO. Each UDO generates one partial, and calls the UDO again until the last
partial is generated. Now the code can be reduced to two instruments: instrument 1 performs
the time loop, calculates the basic values for one note, and triggers the event. Then instrument
11is called which feeds the UDO with the values and passes the audio signals to the output.

EXAMPLE 03F13.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1
seed [¢]

opcode PlayPartials, aa, iiipo
;plays inumparts partials with frequency deviation and own envelopes and
;durations for each partial

ibasfreq \ ; base frequency of sound mixture

inumparts \ ; total number of partials

ipan \ ;, panning

ipartnum \ ; which partial is this (1 - N, default=1)

ixtratim \ ; extra time in addition to p3 needed for this partial (default=0)
xin

ifreqgen = ibasfreq * ipartnum; general frequency of this partial

ifreqdev random -10, 10; frequency deviation between -10% and +10%

ifreq = ifreqgen + (ifreqdev*ifreqgen)/100; real frequency

ixtratimil random 0, p3; calculate additional time for this partial

imaxamp = 1/inumparts; maximum amplitude

idbdev random -6, 0; random deviation in dB for this partial

iamp = imaxamp * ampdb(idbdev-ipartnum); higher partials are softer

ipandev random -.1, .1; panning deviation

ipan = ipan + ipandev

aEnv transeg 0, .005, O, iamp, p3+ixtratimil-.005, -10, O0; envelope

aSine poscil aEnv, ifreq, giSine

aLl, aR1 pan2 aSine, ipan

if ixtratiml > ixtratim then

ixtratim = ixtratiml ;set ixtratim to the ixtratiml if the latter is larger

endif

if ipartnum < inumparts then ;if this is not the last partial
; -- call the next one
aL2, aR2 PlayPartials ibasfreq, inumparts, ipan, ipartnum+1, ixtratim

else ;if this is the last partial
p3 = p3 + ixtratim; reset p3 to the longest ixtratim value
endif
xout aLl+al2, aR1+aR2
endop

instr 1; time loop with metro

kfreq init 1; give a start value for the trigger frequency
kTrig metro kfreq
if kTrig == 1 then ;if trigger impulse:
kdur random 1, 5; random duration for instr 10
knumparts random 8, 14
knumparts = int(knumparts); 8-13 partials
kbasoct random 5, 10; base pitch in octave values
kbasfreq = cpsoct(kbasoct) ;base frequency
kpan random .2, .8; random panning between left (©) and right (1)
event "i", 11, 0, kdur, kbasfreq, knumparts, kpan; call instr 11
kfreq random .25, 1, set new value for trigger frequency
endif
endin

instr 11; plays one mixture with 8-13 partials
aL, aR PlayPartials p4, p5, p6
outs aL, aR
endin

</CsInstruments>
<CsScore>

i1 0 300

</CsScore>
</CsoundSynthesizer>



Using Strings as Arrays

For some situations it can be very useful to use strings in Csound as a collection of single strings
or numbers. This is what programming languages call a list or an array. Csound does not provide
opcodes for this purpose, but you can define these opcodes as UDOs. A set of these UDOs can

then be used like this:

ilen StraylLen "abcde"
ilen -> 5
Sel StrayGetEl "abcde", 0
sel -> "a"
inum StrayGetNum "1 2 3 4 5", 0
inum -> 1
ipos StrayElMem "abcde", "c"
ipos -> 2
ipos StrayNumMem "1 2 3 4 5", 3
ipos -> 2
Sres StraySetEl "abcde", "go", 0
Sres -> "goab cde"
Sres StraySetNum "1 2 3 4 5", 0, 0
Sres -> "0 12 3 4 5"
Srev StrayRev "abcde"
Srev -> "e d c b a"
Sub StraySub "abcde", 1, 3
Sub -> "b c"
Sout StrayRmv "abcde", "bd"
Sout -> "a c e"
Srem StrayRemDup "a b accde e"

Srem -> "a b c de"

ift,iftlen StrayNumToFt "1 2 3 4 5", 1
ift -> 1 (same as f 1 0 -5 -2 12 3 4 5)
iftlen -> 5

You can find an article about defining such a sub-language here, and the up to date UDO code

here (or at the UDO repository).
LINKS AND RELATED OPCODES

Links

This is the page in the Canonical Csound Reference Manual about the definition of UDOs.

The most important resource of User Defined Opcodes is the User-Defined Opcode Database,
editied by Steven Yi.

Also by Steven Yi, read the second part of his article about control flow in Csound in the Csound
ournal (summer 2006).

Related Opcodes

opcode: The opcode used to begin a User Defined Opcode definition.

#include: Useful to include any loadable Csound code, in this case definitions of User Defined
Opcodes.

setksmps: Lets you set a smaller ksmps value locally in a User Defined Opcode.



1 9 - MACROS

Macros within Csound is a mechanism whereby a line or a block of text can be referenced using
a macro codeword. Whenever the codeword is subsequently encountered in a Csound orchestra
or score it will be replaced by the code text contained within the macro. This mechanism can be
useful in situations where a line or a block of code will be repeated many times - if a change is
required in the code that will be repeated, it need only be altered once in the macro definition
rather than having to be edited in each of the repetitions.

Csound utilises a subtly different mechanism for orchestra and score macros so each will be
considered in turn. There are also additional features offered by the macro system such as the
ability to create a macro that accepts arguments - a little like the main macro containing sub-
macros that can be repeated several times within the main macro - the inclusion of a block of
text contained within a completely separate file and other macro refinements.

It is important to realise that a macro can contain any text, including carriage returns, and that
Csound will be ignorant to its use of syntax until the macro is actually used and expanded
elsewhere in the orchestra or score.

ORCHESTRA MACROS

Macros are defined using the syntax:

#define NAME # replacement text #

'‘NAME' is the user-defined name that will be used to call the macro at some point later in the
orchestra; it must begin with a letter but can then contain any combination of numbers and
letters. 'replacement text', bounded by hash symbols will be the text that will replace the macro
name when later called. Remember that the replacement text can stretch over several lines.
One syntactical aspect to note is that '#define' needs to be right at the beginning of a line, i.e.
the Csound parser will be intolerant toward the initial '#' being preceded by any white space,
whether that be spaces or tabs. A macro can be defined anywhere within the <Cslnstruments>
</CsInstruments> sections of a .csd file.

When it is desired to use and expand the macro later in the orchestra the macro name needs to
be preceded with a '$' symbol thus:

$NAME

The following example illustrates the basic syntax needed to employ macros. The name of a
sound file is referenced twice in the score so it is defined as a macro just after the header
statements. Instrument 1 derives the duration of the sound file and instructs instrument 2 to
play a note for this duration. instrument 2 plays the sound file. The score as defined in the
<CsScore> </CsScore> section only lasts for 0.01 seconds but the event_i statement in
instrument 1 will extend this for the required duration. The sound file is a mono file so you can
replace it with any other mono file or use the original one.

EXAMPLE 03GO0l.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 1
0dbfs = 1

; define the macro
#define SOUNDFILE # "loop.wav" #

instr 1
; use an expansion of the macro in deriving the duration of the sound file
idur filelen $SOUNDFILE



event_i "i",2,0,idur
endin

instr 2
; use another expansion of the macro in playing the sound file
al diskin2 $SOUNDFILE,1
out al
endin

</CsInstruments>

<CsScore>

i100.01

e

</CsScore>

</CsoundSynthesizer>

; example written by Iain McCurdy

In more complex situations where we require slight variations, such as different constant values
or different sound files in each reuse of the macro, we can use a macro with arguments. A
macro's argument are defined as a list of sub-macro names within brackets after the name of
the primary macro and each macro argument is separated by an apostrophe as shown below.

#define NAME(Argl'Arg2'Arg3...) # replacement text #

Arguments can be any text string permitted as Csound code, they should not be likened to
opcode arguments where each must conform to a certain type such as i, k, a etc. Macro
arguments are subsequently referenced in the macro text using their names preceded by a '$'
symbol. When the main macro is called later in the orchestra its arguments are then replaced
with the values or strings required. The Csound Reference Manual states that up to five
arguments are permitted but this still refers to an earlier implementation and in fact many more
are actually permitted

In the following example a 6 partial additive synthesis engine with a percussive character is
defined within a macro. Its fundamental frequency and the ratios of its six partials to this
fundamental frequency are prescribed as macro arguments. The macro is reused within the
orchestra twice to create two different timbres, it could be reused many more times however.
The fundamental frequency argument is passed to the macro as p4 from the score.

EXAMPLE 03G02.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 1
0dbfs = 1

gisine ftgen ©0,0,2710,10,1

; define the macro
#define ADDITIVE_TONE(Frq'Ratiol'Ratio2'Ratio3'Ratio4'Ratio5'Ratio6) #
iamp = 0.1
aenv expseg 1,p3*(1/$Ratiol),0.001,1,0.001
al poscil iamp*aenv,$Frqgq*$Ratiol,gisine
aenv expseg 1,p3*(1/$Ratio2),0.001,1,0.001
a2 poscil iamp*aenv,$Frq*$Ratio2,gisine
aenv expseg 1,p3*(1/%$Ratio3),0.001,1,0.001
a3 poscil iamp*aenv,$Frq*$Ratio3,gisine
aenv expseg 1,p3*(1/$Ratio4),0.001,1,0.001
a4 poscil iamp*aenv,$Frq*$Ratio4,gisine
aenv expseg 1,p3*(1/%$Ratio5),0.001,1,0.001
a5 poscil iamp*aenv,$Frqgq*$Ratio5,gisine
aenv expseg 1,p3*(1/%$Ratio6),0.001,1,0.001
a6 poscil iamp*aenv,$Frq*$Ratio6,gisine
a7 sum al,a2,a3,a4, a5, a6

out a7
#

instr 1 ; xylophone

; expand the macro with partial ratios that reflect those of a xylophone
; the fundemental frequency macro argument (the first argument -

; - 1s passed as p4 from the score
$ADDITIVE_TONE(p4'1'3.932'9.538'16.688'24.566'31.147)



endin

instr 2 ; vibraphone
$ADDITIVE_TONE(p4'1'3.997'9.469'15.566'20.863'29.440)
endin

</CsInstruments>

<CsScore>
i 1 200
150
100
800
700
600

e e e e
NNNRE PR

OAWNR O
NANDNR

e
</CsScore>

</CsoundSynthesizer>

; example written by Iain McCurdy

SCORE MACROS

Score macros employ a similar syntax. Macros in the score can be used in situations where a
long string of p-fields are likely to be repeated or, as in the next example, to define a palette of
score patterns than repeat but with some variation such as transposition. In this example two
'riffs" are defined which each employ two macro arguments: the first to define when the riff will
begin and the second to define a transposition factor in semitones. These riffs are played back
using a bass guitar-like instrument using the wgpluck? opcode. Remember that mathematical
expressions within the Csound score must be bound within square brackets [].

EXAMPLE 03G02.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 16
nchnls = 1
0dbfs = 1

instr 1 ; bass guitar

al wgpluck2 0.98, 0.4, cpsmidinn(p4), 0.1, 0.6
aenv linseg 1,p3-0.1,1,0.1,0

out al*aenv

endin

</CsInstruments>
<CsScore>

; p4 = pitch as a midi note number
#define RIFF_1(Start'Trans)

#

i1 [$Start 1 1 [36+$Trans]
i1 [$Start+l ] ©0.25 [43+$%$Trans]
i1 [$Start+1.25] 0.25 [43+$Trans]
i 1 [$Start+1.75] 0.25 [41+$Trans]
i1 [$Start+2.5 ] 1 [46+$Trans]
i 1 [$Start+3.25] 1 [48+$Trans]
#

#define RIFF_2(Start'Trans)

#

i1 [$Start 1 1 [34+$Trans]
i 1 [$Start+1.25] 0.25 [41+$Trans]
i1 [$Start+1.5 ] 0.25 [43+$Trans]
i 1 [$Start+1.75] 0.25 [46+$Trans]
i 1 [$Start+2.25] 0.25 [43+$Trans]
i1 [$Start+2.75] 0.25 [41+$Trans]
i 1 [$Start+3 ] ©0.5 [43+$Trans]
i1 [$Start+3.5 ] 0.25 [46+$Trans]
#

t 0 90

$RIFF_1(0 ' 0)

$RIFF_1(4 ' 0)

$RIFF_2(8 ' 0)

$RIFF_2(12'-5)



$RIFF_1(16'-5)

$RIFF_2(20'-7)

$RIFF_2(24' 0)

$RIFF_2(28"' 5)

e

</CsScore>

</CsoundSynthesizer>

; example written by Iain McCurdy

Score macros can themselves contain macros so that, for example, the above example could be
further expanded so that a verse, chorus structure could be employed where verses and
choruses, defined using macros, were themselves constructed from a series of riff macros.

UDOs and macros can both be used to reduce code repetition and there are many situations
where either could be used but each offers its own strengths. UDOs strengths lies in their ability
to be used just like an opcode with inputs and output, the ease with which they can be shared -
between Csound projects and between Csound users - their ability to operate at a different k-
rate to the rest of the orchestra and in how they facilitate recursion. The fact that macro
arguments are merely blocks of text, however, offers up new possibilities and unlike UDOs,
macros can span several instruments. Of course UDOs have no use in the Csound score unlike
macros. Macros can also be used to simplify the creation of complex FLTK GUI where panel
sections might be repeated with variations of output variable names and location.

Csound's orchestra and score macro system offers many additional refinements and this chapter
serves merely as an introduction to their basic use. To learn more it is recommended to refer to
the relevant sections of the Csound Reference Manual.
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2 O . ADDITIVE SYNTHESIS

Jean Baptiste Joseph Fourier demonstrated around 1800 that any continuous function can be
perfectly described as a sum of sine waves. This in fact means that you can create any sound,
no matter how complex, if you know which sine waves to add together.

This concept really excited the early pioneers of electronic music, who imagined that sine waves
would give them the power to create any sound imaginable and previously unimagined.
Unfortunately, they soon realized that while adding sine waves is easy, interesting sounds must
have a large number of sine waves which are constantly varying in frequency and amplitude,
which turns out to be a hugely impractical task.

However, additive synthesis can provide unusual and interesting sounds. Moreover both, the
power of modern computers, and the ability of managing data in a programming language offer
new dimensions of working with this old tool. As with most things in Csound there are several
ways to go about it. We will try to show some of them, and see how they are connected with
different programming paradigms.

WHAT ARE THE MAIN PARAMETERS OF ADDITIVE
SYNTHESIS?

Before going into different ways of implementing additive synthesis in Csound, we shall think
about the parameters to consider. As additive synthesis is the addition of several sine
generators, the parameters are on two different levels:

e For each sine, there is a frequency and an amplitude with an envelope.

o The frequency is usually a constant value. But it can be varied, though. Natural
sounds usually have very slight changes of partial frequencies.

o The amplitude must at least have a simple envelope like the well-known ADSR. But
more complex ways of continuously altering the amplitude will make the sound much
more lively.

e For the sound as a whole, these are the relevant parameters:

o The total number of sinusoids. A sound which consists of just three sinusoids is of
course "poorer" than a sound which consists of 100 sinusoids.

o The frequency ratios of the sine generators. For a classical harmonic spectrum, the
multipliers of the sinusoids are 1, 2, 3, ... (If your first sine is 100 Hz, the others are
200, 300, 400, ... Hz.) For an inharmonic or noisy spectrum, there are probably no
simple integer ratios. This frequency ratio is mainly responsible for our perception of
timbre.

o The base frequency is the frequency of the first partial. If the partials are showing
an harmonic ratio, this frequency (in the example given 100 Hz) is also the overall
perceived pitch.

o The amplitude ratios of the sinusoids. This is also very important for the resulting
timbre of a sound. If the higher partials are relatively strong, the sound appears
more brilliant; if the higher partials are soft, the sound appears dark and soft.

o The duration ratios of the sinusoids. In simple additive synthesis, all single sines
have the same duration, but they may also differ. This usually relates to the
envelopes: if the envelopes of different partials vary, some partials may die away
faster than others.

It is not always the aim of additive synthesis to imitate natural sounds, but it can definitely be
learned a lot through the task of first analyzing and then attempting to imitate a sound using
additive synthesis techniques. This is what a guitar note looks like when spectrally analyzed:
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Spectral analysis of a guitar tone in time (courtesy of W. Fohl, Hamburg)

Each partial has its own movement and duration. We may or may not be able to achieve this
successfully in additive synthesis. Let us begin with some simple sounds and consider ways of
programming this with Csound; later we will look at some more complex sounds and advanced
ways of programming this.

SIMPLE ADDITIONS OF SINUSOIDS INSIDE AN INSTRUMENT

If additive synthesis amounts to the adding sine generators, it is straightforward to create
multiple oscillators in a single instrument and to add the resulting audio signals together. In the
following example, instrument 1 shows a harmonic spectrum, and instrument 2 an inharmonic
one. Both instruments share the same amplitude multipliers: 1, 1/2, 1/3, 1/4, ... and receive the
base frequency in Csound's pitch notation (octave.semitone) and the main amplitude in dB.

EXAMPLE 04A01.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;example by Andrés Cabrera
sSr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1

instr 1 ;harmonic additive synthesis
;receive general pitch and volume from the score

ibasefrq = cpspch(p4) ;convert pitch values to frequency
ibaseamp = ampdbfs(p5) ;convert dB to amplitude
;create 8 harmonic partials

a0sc1l poscil ibaseamp, ibasefrq, giSine

a0sc2 poscil ibaseamp/2, ibasefrq*2, giSine

a0sc3 poscil ibaseamp/3, ibasefrq*3, giSine

aOsc4 poscil ibaseamp/4, ibasefrq*4, giSine

a0sc5 poscil ibaseamp/5, ibasefrq*5, giSine

a0sc6 poscil ibaseamp/6, ibasefrq*6, giSine

a0sc7 poscil ibaseamp/7, ibasefrq*7, giSine

a0sc8 poscil ibaseamp/8, ibasefrq*8, giSine
;apply simple envelope

kenv linen 1, p3/4, p3, p3/4

;add partials and write to output
aOut = aOscl + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8
outs aOut*kenv, aOut*kenv
endin

instr 2 ;inharmonic additive synthesis



ibasefrq = cpspch(p4)
ibaseamp = ampdbfs(p5)
;create 8 inharmonic partials
a0scl poscil ibaseamp, ibasefrq, giSine
a0sc2 poscil ibaseamp/2, ibasefrq*1.02, giSine
a0sc3 poscil ibaseamp/3, ibasefrq*1.1, giSine
a0sc4 poscil ibaseamp/4, ibasefrq*1.23, giSine
a0sch poscil ibaseamp/5, ibasefrqg*1.26, giSine
a0sc6 poscil ibaseamp/6, ibasefrq*1.31, giSine
a0sc7 poscil ibaseamp/7, ibasefrq*1.39, giSine
a0sc8 poscil ibaseamp/8, ibasefrq*1.41, giSine
kenv linen 1, p3/4, p3, p3/4
aOut = aOscl + aOsc2 + aOsc3 + aOsc4 + aOsc5 + aOsc6 + aOsc7 + aOsc8
outs aOut*kenv, aOut*kenv
endin
</CsInstruments>
<CsScore>
; pch amp
il10e5 8.00 -10
i135 9.00 -14
i158 9.02 -12
i1609 7.01 -12
i17 10 6.00 -10
s
i205 8.00 -10
i235 9.00 -14
i258 9.02 -12
i2609 7.01 -12
i27 10 6.00 -10
</CsScore>

</CsoundSynthesizer>

SIMPLE ADDITIONS OF SINUSOIDS VIA THE SCORE

A typical paradigm in programming: If you find some almost identical lines in your code, consider
to abstract it. For the Csound Language this can mean, to move parameter control to the score.
In our case, the lines

a0sc1 poscil ibaseamp, ibasefrq, giSine

a0sc2 poscil ibaseamp/2, ibasefrq*2, giSine
a0sc3 poscil ibaseamp/3, ibasefrq*3, giSine
a0sc4 poscil ibaseamp/4, ibasefrq*4, giSine
a0sc5 poscil ibaseamp/5, ibasefrq*5, giSine
a0sc6 poscil ibaseamp/6, ibasefrq*6, giSine
a0sc7 poscil ibaseamp/7, ibasefrq*7, giSine
a0sc8 poscil ibaseamp/8, ibasefrq*8, giSine

can be abstracted to the form

a0sc poscil ibaseamp*iampfactor, ibasefrq*ifreqfactor, giSine

with the parameters iampfactor (the relative amplitude of a partial) and ifregfactor (the
frequency multiplier) transferred to the score.

The next version simplifies the instrument code and defines the variable values as score
parameters:

EXAMPLE 04A02.csd
<CsoundSynthesizer>
<CsOptions>
-0 dac
</CsOptions>
<CsInstruments>
;example by Andrés Cabrera and Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giSine ftgen 0, 0, 2n10, 10, 1
instr 1
iBaseFreq = cpspch(p4)
iFregMult = p5 ;frequency multiplier
iBaseAmp = ampdbfs(p6)
iAmpMult = p7 ;amplitude multiplier
iFreq = iBaseFreq * iFreqMult
iAmp = iBaseAmp * iAmpMult
KEnv linen iAmp, p3/4, p3, p3/4



a0sc poscil kEnv, iFreq, giSine
outs a0sc, aolsc
endin

</CsInstruments>
<CsScore>
; freq fregmult amp ampmult
8.09 -10 1
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</CsScore>
</CsoundSynthesizer>

You might say: Okay, where is the simplification? There are even more lines than before! - This
is true, and this is certainly just a step on the way to a better code. The main benefit now is
flexibility. Now our code is capable of realizing any number of partials, with any amplitude,
frequency and duration ratios. Using the Csound score abbreviations (for instance a dot for
repeating the previous value in the same p-field), you can do a lot of copy-and-paste, and focus
on what is changing from line to line.

Note also that you are now calling one instrument in multiple instances at the same time for
performing additive synthesis. In fact, each instance of the instrument contributes just one
partial for the additive synthesis. This call of multiple and simultaneous instances of one
instrument is also a typical procedure for situations like this, and for writing clean and effective
Csound code. We will discuss later how this can be done in a more elegant way than in the last
example.

CREATING FUNCTION TABLES FOR ADDITIVE SYNTHESIS

Before we continue on this road, let us go back to the first example and discuss a classical and
abbreviated method of playing a number of partials. As we mentioned at the beginning, Fourier
stated that any periodic oscillation can be described as a sum of simple sinusoids. If the single
sinusoids are static (no individual envelope or duration), the resulting waveform will always be the
same.

Partial 1

Partial 2

Partial 3

Partial 4



You see four sine generators, each with fixed frequency and amplitude relations, and mixed
together. At the bottom of the illustration you see the composite waveform which repeats itself
at each period. So - why not just calculate this composite waveform first, and then read it with
just one oscillator?

This is what some Csound GEN routines do. They compose the resulting shape of the periodic
wave, and store the values in a function table. GEN10 can be used for creating a waveform
consisting of harmonically related partials. After the common GEN routine p-fields

<table number>, <creation time>, <size in points>, <GEN number>

you have just to determine the relative strength of the harmonics. GENO9 is more complex and
allows you to also control the frequency multiplier and the phase (0-360°) of each partial. We are
able to reproduce the first example in a shorter (and computational faster) form:

EXAMPLE 04A03.csd
<CsoundSynthesizer>
<CsOptions>
-0 dac
</CsOptions>
<CsInstruments>
;example by Andrés Cabrera and Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giSine ftgen 0, 0, 2710, 10, 1
giHarm ftgen 1, 0, 2A12, 10, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8
giNois ftgen 2, 0, 2712, 9, 100,1,0, 102,1/2,0, 110,1/3,0,
123,1/4,0, 126,1/5,0, 131,1/6,0, 139,1/7,0, 141,1/8,0

instr 1
iBasFreq = cpspch(p4)
iTabFreq = p7 ;base frequency of the table
iBasFreq = iBasFreq / iTabFreq
iBaseAmp = ampdb(p5)
iFtNum = p6
a0sc poscil iBaseAmp, iBasFreq, iFtNum
aEnv linen a0sc, p3/4, p3, p3/4

outs aEnv, aEnv

endin
</CsInstruments>
<CsScore>
; pch amp table table base (Hz)
il1e5 8.00 -10 1 1
i 35 9.00 -14
i 58 9.02 -12
i 6 9 7.01 -12
i 7 10 6.00 -10
s
i1e5 8.00 -10 2 100
i 35 9.00 -14
i 58 9.02 -12
i 6 9 7.01 -12
i. 710 6.00 -10
</CsScore>

</CsoundSynthesizer>

As you can see, for non-harmonically related partials, the construction of a table must be done
with a special care. If the frequency multipliers in our first example started with 1 and 1.02, the
resulting period is acually very long. For a base frequency of 100 Hz, you will have the
frequencies of 100 Hz and 102 Hz overlapping each other. So you need 100 cycles from the 1.00
multiplier and 102 cycles from the 1.02 muiltiplier to complete one period and to start again both
together from zero. In other words, we have to create a table which contains 100 respectively
102 periods, instead of 1 and 1.02. Then the table values are not related to 1 - as usual - but to
100. That is the reason we have to introduce a new parameter iTabFreq for this purpose.

This method of composing waveforms can also be used for generating the four standard
historical shapes used in a synthesizer. An impulse wave can be created by adding a number of
harmonics of the same strength. A sawtooth has the amplitude multipliers 1, 1/2, 1/3, ... for the
harmonics. A square has the same multipliers, but just for the odd harmonics. A triangle can be
calculated as 1 divided by the square of the odd partials, with swaping positive and negative
values. The next example creates function tables with just ten partials for each standard form.



EXAMPLE 04A04.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

;example by Joachim Heintz
Sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giImp ftgen
giSaw ftgen
gisqu ftgen
giTri ftgen

4096, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10
4096, 10, 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, @

, 4096, 10, 1, 0, -1/9, 0, 1/25, 0, -1/49, 0, 1/81, @
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instr 1

asig poscil .2, 457, p4
outs asig, asig

endin

</CsInstruments>
<CsScore>

i10e31

il1432

i1833

i112 3 4
</CsScore>
</CsoundSynthesizer>

TRIGGERING SUBINSTRUMENTS FOR THE PARTIALS

Performing additive synthesis by designing partial strengths into function tables has the
disadvantage that once a note has begun there is no way of varying the relative strengths of
individual partials. There are various methods to circumvent the inflexibility of table-based
additive synthesis such as morphing between several tables (using for example the ftmorf
opcode). Next we will consider another approach: triggering one instance of a subinstrument for
each partial, and exploring the possibilities of creating a spectrally dynamic sound using this
technique.

Let us return to the second instrument (05A02.csd) which already made some abstractions and
triggered one instrument instance for each partial. This was done in the score; but now we will
trigger one complete note in one score line, not just one partial. The first step is to assign the
desired number of partials via a score parameter. The next example triggers any number of
partials using this one value:

EXAMPLE 04A05.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
Sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1

instr 1 ;master instrument

inumparts = p4 ;number of partials
ibasfreq = 200 ;base frequency
ipart = 1 ;count variable for loop

;loop for inumparts over the ipart variable
;and trigger inumpartss instanes of the subinstrument

loop:
ifreq = ibasfreq * ipart
iamp = 1/ipart/inumparts
event_i "i", 10, 0, p3, ifreq, iamp
loop_le ipart, 1, inumparts, loop
endin

instr 10 ;subinstrument for playing one partial
ifreq p4 ;frequency of this partial
iamp p5 ;amplitude of this partial



aenv transeg 0, .01, O, iamp, p3-0.1, -10, O

apart poscil aenv, ifreq, giSine
outs apart, apart

endin

</CsInstruments>

<CsScore>

; number of partials

i103 10

i133 20

i163 2

</CsScore>

</CsoundSynthesizer>

This instrument can easily be transformed to be played via a midi keyboard. The next example
connects the number of synthesized partials with the midi velocity. So if you play softly, the
sound will have fewer partials than if a key is struck with force.

EXAMPLE 04A06.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1
massign 0, 1 ;all midi channels to instr 1

instr 1 ;master instrument

ibasfreq cpsmidi ;base frequency

iampmid ampmidi 20 ;receive midi-velocity and scale 0-20
inparts = int(iampmid)+1 ;exclude zero

ipart = 1 ;count variable for loop

;loop for inumparts over the ipart variable

;and trigger inumpartss instanes of the subinstrument

loop:
ifreq = ibasfreq * ipart
iamp = 1/ipart/inparts
event_i "i", 10, 0, 1, ifreq, iamp
loop_le ipart, 1, inparts, loop
endin

instr 10 ;subinstrument for playing one partial

ifreq = p4 ;frequency of this partial
iamp = p5 ;amplitude of this partial
aenv transeg 0, .01, 0, iamp, p3-.01, -3, O
apart poscil aenv, ifreq, giSine

outs apart/3, apart/3
endin
</CsInstruments>
<CsScore>
f 0 3600
</CsScore>

</CsoundSynthesizer>

Although this instrument is rather primitive it is useful to be able to control the timbre in this
using key velocity. Let us continue to explore other methods of creating parameter variations in
additive synthesis.

USER-CONTROLLED RANDOM VARIATIONS IN ADDITIVE
SYNTHESIS

In natural sounds, there is movement and change all the time. Even the best player or singer will
not be able to play a note in the exact same way twice. And inside a tone, the partials have
some unsteadiness all the time: slight excitations of the amplitudes, uneven durations, slight
frequency movements. In an audio programming language like Csound, we can achieve these
movements with random deviations. It is not so important whether we use randomness or not,
rather in which way. The boundaries of random deviations must be adjusted as carefully as with
any other parameter in electronic composition. If sounds using random deviations begin to sound
like mistakes then it is probably less to do with actually using random functions but instead more



to do with some poorly chosen boundaries.

Let us start with some random deviations in our subinstrument. These parameters can be
affected:

e The frequency of each partial can be slightly detuned. The range of this possible
maximum detuning can be set in cents (100 cent = 1 semitone).

e The amplitude of each partial can be altered, compared to its standard value. The
alteration can be measured in Decibel (dB).

e The duration of each partial can be shorter or longer than the standard value. Let us
define this deviation as a percentage. If the expected duration is five seconds, a maximum
deviation of 100% means getting a value between half the duration (2.5 sec) and the
double duration (10 sec).

The following example shows the effect of these variations. As a base - and as a reference to its
author - we take the "bell-like sound" which Jean-Claude Risset created in his Sound Catalogue.!

EXAMPLE 04A07.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

;frequency and amplitude multipliers for 11 partials of Risset's bell
giFgs ftgen o, 0, -11,-2,.56,.563,.92, .923,1.19,1.7,2,2.74,
3,3.74,4.07
giAmps ftgen 0, o, -11, -2, 1, 2/3, 1, 1.8, 8/3, 1.46, 4/3, 4/3, 1, 4/3
giSine ftgen 0, 0, 2n10, 10, 1
seed [¢]

instr 1 ;master instrument

ibasfreq = 400

ifqdev = p4 ;maximum freq deviation in cents

iampdev = p5 ;maximum amp deviation in dB

idurdev = p6 ;maximum duration deviation in %

indx = @ ;count variable for loop

loop:

ifgmult tab_i indx, giFqgs ;get frequency multiplier from table

ifreq = ibasfreq * ifgmult

iampmult tab_i indx, giAmps ;get amp multiplier

iamp = iampmult / 20 ;scale
event_1i "i", 10, 0, p3, ifreq, iamp, ifqdev, iampdev, idurdev
loop_1t indx, 1, 11, loop

endin

instr 10 ;subinstrument for playing one partial
;receive the parameters from the master instrument

ifregnorm = p4 ;standard frequency of this partial
iampnorm = p5 ;standard amplitude of this partial
ifqdev = p6 ;maximum freq deviation in cents
iampdev = p7 ;maximum amp deviation in dB
idurdev = p8 ;maximum duration deviation in %
;calculate frequency
icent random -ifqgdev, ifqgdev ;cent deviation
ifreq = ifregnorm * cent(icent)
;calculate amplitude
idb random -iampdev, iampdev ;dB deviation
iamp = iampnorm * ampdb(idb)
;calculate duration
idurperc random -idurdev, idurdev ;duration deviation (%)
iptdur = p3 * 2A(idurperc/100)
p3 = iptdur ;set p3 to the calculated value
;play partial
aenv transeg 0, .01, 0, iamp, p3-.01, -10, ©
apart poscil aenv, ifreq, giSine

outs apart, apart
endin
</CsInstruments>
<CsScore>

; frequency amplitude duration
; deviation deviation deviation
; in cent in dB in %



;unchanged sound (twice)

r 2

i10e5 ¢} [¢] c]
s

;;slight variations in frequency

r 4

i10e5 25 [¢] c]
;7slight variations in amplitude

r 4

i1e5 [0} 6 0
;;slight variations in duration

r 4

i105 ¢} [¢] 30
;;slight variations combined

r 6

i10e5 25 6 30
; heavy variations

r 6

i10e5 50 9 100
</CsScore>

</CsoundSynthesizer>

For a midi-triggered descendant of the instrument, we can - as one of many possible choices -
vary the amount of possible random variation on the key velocity. So a key pressed softly plays
the bell-like sound as described by Risset but as a key is struck with increasing force the sound
produced will be increasingly altered

EXAMPLE 04A08.csd
<CsoundSynthesizer>
<CsOptions>
-0 dac
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
;frequency and amplitude multipliers for 11 partials of Risset's bell
giFgs ftgen 0, ©, -11, -2, .56,.563,.92,.923,1.19,1.7,2,2.74,3,
3.74,4.07
giAmps ftgen e, 0, -11, -2, 1, 2/3, 1, 1.8, 8/3, 1.46, 4/3, 4/3, 1, 4/3
giSine ftgen 0, 0, 2n10, 10, 1
seed ¢}

massign 0, 1 ;all midi channels to instr 1

instr 1 ;master instrument
;;scale desired deviations for maximum velocity
;frequency (cent)

imxfqdv = 100
;amplitude (dB)
imxampdv = 12
;duration (%)

imxdurdv = 100

;;9et midi values

ibasfreq cpsmidi ;base frequency

iampmid ampmidi 1 ;receive midi-velocity and scale 0-1
;;calculate maximum deviations depending on midi-velocity

ifqdev = imxfqdv * iampmid

iampdev = imxampdv * iampmid

idurdev = imxdurdv * iampmid

;;trigger subinstruments

indx = @ ;count variable for loop

loop:

ifgmult tab_i indx, giFqgs ;get frequency multiplier from table

ifreq = ibasfreq * ifgmult

iampmult tab_i indx, giAmps ;get amp multiplier

iamp = iampmult / 20 ;scale
event_i "i", 10, 0, 3, ifreq, iamp, ifqdev, iampdev, idurdev
loop_1t indx, 1, 11, loop

endin

instr 10 ;subinstrument for playing one partial
;receive the parameters from the master instrument

ifregnorm = p4 ;standard frequency of this partial
iampnorm = p5 ;standard amplitude of this partial
ifqdev = p6 ;maximum freq deviation in cents
iampdev = p7 ;maximum amp deviation in dB
idurdev = p8 ;maximum duration deviation in %
;calculate frequency

icent random -ifqdev, ifgdev ;cent deviation

ifreq = ifregnorm * cent(icent)



;calculate amplitude

idb random -iampdev, iampdev ;dB deviation
iamp = iampnorm * ampdb(idb)
;calculate duration
idurperc random -idurdev, idurdev ;duration deviation (%)
iptdur = p3 * 2A(idurperc/100)
p3 = iptdur ;set p3 to the calculated value
;play partial
aenv transeg @, .01, 0, iamp, p3-.01, -10, O
apart poscil aenv, ifreq, giSine
outs apart, apart
endin
</CsInstruments>
<CsScore>
f 0 3600
</CsScore>

</CsoundSynthesizer>

It will depend on the power of your computer whether you can play examples like this in
realtime. Have a look at chapter 2D (Live Audio) for tips on getting the best possible
performance from your Csound orchestra.

Additive synthesis can still be an exciting way of producing sounds. The nowadays computational
power and programming structures open the way for new discoverings and ideas. The later
examples were intended to show some of these potentials of additive synthesis in Csound.

1. Jean-Claude Risset, Introductory Catalogue of Computer Synthesized Sounds (1969), cited
after Dodge/Jerse, Computer Music, New York / London 1985, p.94:



21 - SUBTRACTIVE SYNTHESIS

INTRODUCTION

Subtractive synthesis is, at least conceptually, the inverse of additive synthesis in that instead
of building complex sound through the addition of simple cellular materials such as sine waves,
subtractive synthesis begins with a complex sound source, such as white noise or a recorded
sample, or a rich waveform, such as a sawtooth or pulse, and proceeds to refine that sound by
removing partials or entire sections of the frequency spectrum through the use of audio filters.

The creation of dynamic spectra (an arduous task in additive synthesis) is relatively simple in
subtractive synthesis as all that will be required will be to modulate a few parameters pertaining
to any filters being used. Working with the intricate precision that is possible with additive
synthesis may not be as easy with subtractive synthesis but sounds can be created much more
instinctively than is possible with additive or FM synthesis.

A CSOUND TWO-OSCILLATOR SYNTHESIZER

The first example represents perhaps the classic idea of subtractive synthesis: a simple two
oscillator synth filtered using a single resonant lowpass filter. Many of the ideas used in this
example have been inspired by the design of the Minimoog synthesizer (1970) and other similar
instruments.

Each oscillator can describe either a sawtooth, PWM waveform (i.e. square - pulse etc.) or white
noise and each oscillator can be transposed in octaves or in cents with respect to a fundamental
pitch. The two oscillators are mixed and then passed through a 4-pole / 24dB per octave
resonant lowpass filter. The opcode 'moogladder' is chosen on account of its authentic vintage
character. The cutoff frequency of the filter is modulated using an ADSR-style (attack-decay-
sustain-release) envelope facilitating the creation of dynamic, evolving spectra. Finally the sound
output of the filter is shaped by an ADSR amplitude envelope.

As this instrument is suggestive of a performance instrument controlled via MIDI, this has been
partially implemented. Through the use of Csound's MIDI interoperability opcode, mididefault, the
instrument can be operated from the score or from a MIDI keyboard. If a MIDI note is received,
suitable default p-field values are substituted for the missing p-fields. MIDI controller 1 can be
used to control the global cutoff frequency for the filter.

A schematic for this instrument is shown below:
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EXAMPLE 04B01.csd

<CsoundSynthesizer>



<CsOptions>
-odac -Ma
</CsOptions>

<CsInstruments>
sr = 44100
ksmps = 4
nchnls = 2
0dbfs = 1

initc7 1,1,0.8

prealloc 1, 10

instr 1
iNum notnum
iCF ctrl7

;set initial controller position

;read in midi note number
1,1,0.1,14 ;read in midi controller 1

; set up default p-field values for midi activated notes

mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault
mididefault

; asign p-fields to
icpPs
kAmp1
iTypel
kPw1
koct1
kTunel
kAmp2
iType2
kPw2
koct2
kTune2
iCF
iFAtt
iFDec
iFSus
iFRel
kRes
iAAtt
iADec
iASus
iARel

;oscillator 1

iNum, p4 ;pitch (note number)
0.3, p5 ;amplitude 1

2, p6 ;type 1

0.5, p7 ;pulse width 1

0, p8 ;octave disp. 1

0, p9 ;tuning disp. 1

0.3, p1o ;amplitude 2

1, pi1 ;type 2

0.5, p12 ;pulse width 2

-1, p13 ,octave displacement 2
20, pl4 ;tuning disp. 2

iCF, p15 ;filter cutoff freq
0.01, p16 ;filter env. attack time
1, pi7 ;filter env. decay time
0.01, p18 ;filter env. sustain level
0.1, p19 ;filter release time
0.3, p20 ;filter resonance

0.01, p21 ;amp. env. attack

0.1, p22 ;amp. env. decay.

1, p23 ;amp. env. sustain

0.01, p24 ;amp. env. release
variables

cpsmidinn(p4) ;convert from note number to cps
p5

p6

p7

octave(p8) ;convert from octave displacement to multiplier
cent(p9) ;convert from cents displacement to multiplier
p10

pi1

pi12

octave(p13)

cent(p14)

p15

p16

p17

p18

p19

p20

p21

p22

p23

p24

;if type is sawtooth or square...
if iTypel==1||iTypel==2 then
;...derive vco2 'mode' from waveform type

kAmp1, iCPS*kOct1*kTunel, iModel, kPW1;VCO audio oscillator

;otherwise. ..
;...generate white noise

iModel = (iTypel=170:2)
asSigl vco2

else

asSigl noise kAmpl, 0.5
endif

;oscillator 2 (identical in design to oscillator 1)
if iType2==1||iType2==2 then

iMode2 =
asSig2 wvco2
else

asSig2 noise
endif

;mix oscillators
aMix sum
;lowpass filter
kFiltEnv expsegr

(iType2=
kAmp2, iCPS*kOct2*kTune2, iMode2, kPW2

1720:2)

kAmp2,0.5

asSigl,asSig2

0.0001, iFAtt,iCPS*iCF, iFDec, iCPS*iCF*iFSus, iFRel, 0.0001



aout moogladder aMix, kFiltEnv, kRes

;amplitude envelope

aAmpEnv expsegr 0.0001, iAAtt, 1, iADec, 1ASus, 1ARel, 0.0001
aout = aout *aAmpEnv
outs aout,aout

endin
</CsInstruments>
<CsScore>
;p4 = oscillator frequency
;oscillator 1
;p5 = amplitude
;p6 = type (1l=sawtooth,2=square-PWM,3=noise)
;P7 = PWM (square wave only)
;p8 = octave displacement

;P9 = tuning displacement (cents)
;oscillator 2
;p10 = amplitude

;pll = type (1=sawtooth,2=square-PWM,3=noise)
;P12 = pwm (square wave only)

;p13 = octave displacement

;p1l4 = tuning displacement (cents)

;9lobal filter envelope

;P15 = cutoff

;pl6 = attack time

;pl7 = decay time

;p18 = sustain level (fraction of cutoff)
;P19 = release time

;P20 = resonance
;g9lobal amplitude envelope

;p21 = attack time
;p22 = decay time
;P23 = sustain level
;p24 = release time

; pl p2 p3 p4 p5 p6 p7 p8 p9 pl0 pll pi12 pi3
;pl4 pl5 p1l6 pl7 pl8 pl9 p20 p21 p22 p23 p24
e 2 .5 © -5 0 2 0.50

i1 0 1 50 \
5 12 .01 2 .01 .1 0o .005 .01 1 .05
i1 + 1 50 .2 2 .5 0 -5 .2 2 0.5 0 \
5 1 .01 1 .1 .1 .5 .005 .01 1 .05
i1 + 1 50 .2 2 .5 06 -8 .2 2 0.5 0 \
8 3 .01 1 .1 .1 .5 .005 .01 1 .05
i1 + 1 50 .2 2 .5 0 -8 .2 2 0.5 -1 \
8§ 7 .01 1 .1 .1 .5 .005 .01 1 .05
i1 + 3 50 .2 1 .5 0 -10 .2 1 0.5 -2 \
10 40 .01 3 .001 .1 .5 .005 .01 1 .05
il + 10 50 1 2 .01 -20 .2 3 0.5 0 \
® 40 5 5 .001 1.5 .1 .005 .01 1 .05

f 0 3600

e

</CsScore>

</CsoundSynthesizer>

SIMULATION OF TIMBRES FROM A NOISE SOURCE

The next example makes extensive use of bandpass filters arranged in parallel to filter white
noise. The bandpass filter bandwidths are narrowed to the point where almost pure tones are
audible. The crucial difference is that the noise source always induces instability in the amplitude
and frequency of tones produced - it is this quality that makes this sort of subtractive synthesis
sound much more organic than an additive synthesis equivalent. If the bandwidths are widened
then more of the characteristic of the noise source comes through and the tone becomes ‘airier'
and less distinct; if the bandwidths are narrowed the resonating tones become clearer and
steadier. By varying the bandwidths interesting metamorphoses of the resultant sound are
possible.

22 reson filters are used for the bandpass filters on account of their ability to ring and resonate
as their bandwidth narrows. Another reason for this choice is the relative CPU economy of the
reson filter, a not inconsiderable concern as so many of them are used. The frequency ratios
between the 22 parallel filters are derived from analysis of a hand bell, the data was found in
the appendix of the Csound manual here.

In addition to the white noise as a source, noise impulses are also used as a sound source (via
the 'mpulse' opcode). The instrument will automatically and randomly slowly crossfade between
these two sound sources



A lowpass and highpass filter are inserted in series before the parallel bandpass filters to shape
the frequency spectrum of the source sound. Csound's butterworth filters butlp and buthp are
chosen for this task on account of their steep cutoff slopes and lack of ripple at the cutoff point.

The outputs of the reson filters are sent alternately to the left and right outputs in order to
create a broad stereo effect.

This example makes extensive use of the 'rspline' opcode, a generator of random spline
functions, to slowly undulate the many input parameters. The orchestra is self generative in that
instrument 1 repeatedly triggers note events in instrument 2 and the extensive use of random
functions means that the results will continually evolve as the orchestra is allowed to perform.

A flow diagram for this instrument is shown below:
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<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>

;Example written by Iain McCurdy

sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

instr 1 ; triggers notes in instrument 2 with randomised p-fields
krate randomi 0.2,0.4,0.1 ;rate of note generation

ktrig metro krate ;triggers used by schedkwhen
koct random 5,12 ;fundemental pitch of synth note
kdur random 15,30 ;duration of note

schedkwhen ktrig,®,0,2,0,kdur,cpsoct(koct) ;trigger a note in instrument 2
endin

instr 2 ; subtractive synthesis instrument

aNoise pinkish 1 ;a noise source sound: pink noise

kGap rspline 0.3,0.05,0.2,2 ;time gap between impulses

aPulse mpulse 15, kGap ;a train of impulses

kCFade rspline ©0,1,0.1,1 ;crossfade point between noise and impulses

aInput ntrpol aPulse, aNoise, kCFade;implement crossfade

; cutoff frequencies for low and highpass filters

kLPF_CF rspline 13,8,0.1,0.4

kHPF_CF rspline 5,10,0.1,0.4

; filter input sound with low and highpass filters in series -
; - done twice per filter in order to sharpen cutoff slopes
alnput butlp alnput, cpsoct(kLPF_CF)

aInput butlp aInput, cpsoct(kLPF_CF)

alnput buthp aInput, cpsoct(kHPF_CF)

alnput buthp alnput, cpsoct(kHPF_CF)

kef rspline p4*1.05,p4*0.95,0.01,0.1 ; fundemental
; bandwidth for each filter is created individually as a random spline function
kbw1 rspline 0.00001,10,0.2,1

kbw2 rspline 0.00001,10,0.2,1

kbw3 rspline 0.00001,10,0.2,1

kbw4 rspline 0.00001,10,0.2,1

kbw5 rspline 0.00001,10,0.2,1

kbw6 rspline 0.00001,10,0.2,1

kbw7 rspline 0.00001,10,0.2,1

kbw8 rspline 0.00001,10,0.2,1



kbw9 rspline 0.00001,10,0.2,1

kbw10 rspline 0.00001,10,0.2,1

kbw11l rspline 0.00001,10,0.2,1

kbw12 rspline 0.00001,10,0.2,1

kbwi3  rspline 0.00001,10,0.2,1

kbw14 rspline 0.00001,10,0.2,1

kbw15 rspline 0.00001,10,0.2,1

kbw16 rspline 0.00001,10,0.2,1

kbw17 rspline 0.00001,10,0.2,1

kbwl8 rspline 0.00001,10,0.2,1

kbw19 rspline 0.00001,10,0.2,1

kbw20 rspline 0.00001,10,0.2,1

kbw21 rspline 0.00001,10,0.2,1

kbw22 rspline 0.00001,10,0.2,1

imode = 0 ; amplitude balancing method used by the reson filters
al reson aInput, kcf*1, kbw1, imode
a2 reson aInput, kcf*1.0019054878049, kbw2, imode
a3 reson alnput, kcf*1.7936737804878, kbw3, imode
a4 reson alnput, kcf*1.8009908536585, kbw4, imode
ab reson aInput, kcf*2.,5201981707317, kbw5, imode
a6 reson aInput, kcf*2.5224085365854, kbw6, imode
a7 reson aInput, kcf*2.9907012195122, kbw7, imode
a8 reson aInput, kcf*2.9940548780488, kbw8, imode
a9 reson aInput, kcf*3.7855182926829, kbw9, imode
alo reson aInput, kcf*3.8061737804878, kbwle,imode
all reson aInput, kcf*4.5689024390244, kbwll,imode
al2 reson alnput, kcf*4.5754573170732, kbwl2,imode
al3 reson alnput, kcf*5.0296493902439, kbwl3,imode
al4 reson aInput, kcf*5.0455030487805, kbwl4,imode
als reson aInput, kcf*6.0759908536585, kbwl5,imode
alé reson alnput, kcf*5.9094512195122, kbw1l6,imode
al7 reson alnput, kcf*6.4124237804878, kbwl7,imode
als8 reson aInput, kcf*6.4430640243902, kbwl8, imode
al9 reson aInput, kcf*7.0826219512195, kbw1l9,imode
a0 reson aInput, kcf*7.0923780487805, kbw20,imode
a2l reson alnput, kcf*7.3188262195122, kbw21,imode
az22 reson aInput, kcf*7.5551829268293, kbw22,imode

; amplitude control for
kAmp1 rspline 0, 1,
kAmp2 rspline 1
kAmp3 rspline
kAmp4 rspline
kAmp5 rspline
kAmp6 rspline
kAmp7 rspline
kAmp8 rspline
kAmp9 rspline
kAmp10 rspline
kAmp11 rspline
kAmp12 rspline
kAmp13 rspline
kAmp14 rspline
kAmp15 rspline
kAmp16 rspline
kAmp17 rspline
kAmp18 rspline
kAmp19 rspline
kAmp20 rspline
kAmp21 rspline
kAmp22 rspline

QD
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; left and right channel mixes are created using alternate filter outputs.
; This shall create a stereo effect.

aMixL sum al*kAmpl, a3*kAmp3, a5*kAmp5, a7*kAmp7, a9*kAmp9, al1*kAmp11, \
al3*kAmp13,al5*kAmp15, al17*kAmp17,a19*kAmp19, a21*kAmp21
aMixR sum a2*kAmp2, a4*kAmp4, a6*kAmp6, a8*kAmp8, a10*kAmp10,al2*kAmp12, \

al4*kAmp14,al6*kAmp16, a18*kAmp18, a20*kAmp20,a22*kAmp22
kEnv linseg 0, p3*0.5, 1,p3*0.5,0,1,0 ; global amplitude envelope
outs (aMixL*KEnv*0.00008), (aMixR*KEnv*0.00008) ; audio sent to outputs
endin
</CsInstruments>
<CsScore>
i1 0 3600 ; instrument 1 (note generator) plays for 1 hour
e
</CsScore>

</CsoundSynthesizer>

VOWEL-SOUND EMULATION USING BANDPASS FILTERING



The final example in this section uses precisely tuned bandpass filters, to simulate the sound of
the human voice expressing vowel sounds. Spectral resonances in this context are often referred
to as 'formants'. Five formants are used to simulate the effect of the human mouth and head as
a resonating (and therefore filtering) body. The filter data for simulating the vowel sounds A,E,,O
and U as expressed by a bass, tenor, counter-tenor, alto and soprano voice were found in the
appendix of the Csound manual here. Bandwidth and intensity (dB) information is also needed to
accurately simulate the various vowel sounds.

reson filters are again used but butbp and others could be equally valid choices.

Data is stored in GENO7 linear break point function tables, as this data is read by k-rate line
functions we can interpolate and therefore morph between different vowel sounds during a note.

The source sound for the filters comes from either a pink noise generator or a pulse waveform.
The pink noise source could be used if the emulation is to be that of just the breath whereas the
pulse waveform provides a decent approximation of the human vocal chords buzzing. This
instrument can however morph continuously between these two sources.

A flow diagram for this instrument is shown below:
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EXAMPLE 04B03.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by Iain McCurdy
Sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1
instr 1
kFund expon p4,p3,p5 ; fundamental
kVow line p6,p3,p7 ; vowel select
kBW line p8,p3,p9 ; bandwidth factor
ivoice = p1oe ; voice select
kSrc line pl1, p3,pl2 ; source mix
aNoise pinkish 3 ; pink noise
avco vco2 1.2,kFund, 2,0.02 ; pulse tone
alnput ntrpol avCo, aNoise, kSrc ; input mix

; read formant cutoff frequenies from tables

kCF1 table kVow, 1+(iVoice*15),1
kCF2 table kVow, 2+(iVoice*15),1
kCF3 table kVow, 3+(iVoice*15),1
kCF4 table kVow, 4+(iVoice*15),1
kCF5 table kvVow, 5+(ivoice*15),1

; read formant intensity values from tables
kDB1 table kVow, 6+(1iVoice*15),1



kDB2 table kVow, 7+(ivoice*15),1

kDB3 table kVow, 8+(iVoice*15),1

kDB4 table kVow, 9+(iVoice*15),1

kDB5 table kVow, 10+ (iVoice*15),1

; read formant bandwidths from tables

kBW1 table kVow,11+(iVoice*15),1

kBW2 table kVow,12+(iVoice*15),1

kBW3 table kVow, 13+ (iVoice*15),1

kBW4 table kVow, 14+ (iVoice*15),1

kBW5 table kVow, 15+(iVoice*15),1

; create resonant formants byt filtering source sound

aFormi reson aInput, kCF1, kBw1i*kBw, 1 ; formant 1
aForm2 reson aInput, kCF2, kBW2*kBw, 1 ; formant 2
aForm3 reson aInput, kCF3, kBW3*kBw, 1 ; formant 3
aForm4 reson aInput, kCF4, kBw4*kBw, 1 ; formant 4
aForm5 reson aInput, KCF5, kBW5*kBw, 1 ; formant 5

; formants are mixed and multiplied both by intensity values derived from
tables and by the on-screen gain controls for each formant

aMix sum
aForml*ampdbfs(kDB1),aForm2*ampdbfs(kDB2), aForm3*ampdbfs(kDB3), aForm4*ampdbfs(kDB¢

kEnv linseg 0,3,1,p3-6,1,3,0 ; an amplitude envelope
outs aMix*kEnv, aMix*kEnv ; send audio to outputs
endin
</CsInstruments>
<CsScore>

f 0 3600 ;DUMMY SCORE EVENT - PERMITS REALTIME PERFORMANCE FOR UP TO 1 HOUR

;FUNCTION TABLES STORING FORMANT DATA FOR EACH OF THE FIVE VOICE TYPES

REPRESENTED
; BASS

f1 0 32768 -7 600 10922 400 10922 250 10924 350 ;FREQ

f 2 0 32768 -7 1040 10922 1620 10922 1750 10924 600 ;FREQ

f 3 0 32768 -7 2250 10922 2400 10922 2600 10924 2400 ;FREQ

f 4 0 32768 -7 2450 10922 2800 10922 3050 10924 2675 ;FREQ

f 5 0 32768 -7 2750 10922 3100 10922 3340 10924 2950 ;FREQ

f 6 032768 -7 0 10922 0 10922 0 10924 0 ;dB

f 7 032768 -7 -7 10922 -12 10922 -30 10924 -20 ;dB

f8 032768 -7 -9 10922 -9 10922 -16 10924 -32 ;dB

f 9O 032768 -7 -9 10922 -12 10922 -22 10924 -28 ;dB

f 10 0 32768 -7 -20 10922 -18 10922 -28 10924 -36 ;dB

f 11 © 32768 -7 60 10922 40 10922 60 10924 40 ;BAND WIDTH

f 12 © 32768 -7 70 10922 80 10922 90 10924 80 ;BAND WIDTH

f 13 0 32768 -7 110 10922 100 10922 100 10924 100 ;BAND WIDTH

f 14 © 32768 -7 120 10922 120 10922 120 10924 120 ;BAND WIDTH

f 15 0 32768 -7 130 10922 120 10922 120 10924 120 ;BAND WIDTH

; TENOR

f 16 © 32768 -7 650 8192 400 8192 290 8192 400 8192 350 ;FREQ

f 17 © 32768 -7 1080 8192 1700 8192 1870 8192 800 8192 600 ;FREQ
f 18 @ 32768 -7 2650 8192 2600 8192 2800 8192 2600 8192 2700 ;FREQ
f 19 © 32768 -7 2900 8192 3200 8192 3250 8192 2800 8192 2900 ;FREQ
f 20 © 32768 -7 3250 8192 3580 8192 3540 8192 3000 8192 3300 ;FREQ
f 21 0 32768 -7 0 8192 0 8192 © 8192 0 8192 0 ;dB

f 22 © 32768 -7 -6 8192 -14 8192 -15 8192 -10 8192 -20 ;dB

f 23 0 32768 -7 -7 8192 -12 8192 -18 8192 -12 8192 -17 ;dB

f 24 © 32768 -7 -8 8192 -14 8192 -20 8192 -12 8192 -14 ;dB

f 25 0 32768 -7 -22 8192 -20 8192 -30 8192 -26 8192 -26 ;dB

f 26 0 32768 -7 80 8192 70 8192 40 8192 40 8192 40 ;BAND WIDTH

f 27 © 32768 -7 90 8192 80 8192 90 8192 80 8192 60 ;BAND WIDTH

f 28 0 32768 -7 120 8192 100 8192 100 8192 100 8192 100 ;BAND WIDTH

f 29 0 32768 -7 130 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH

f 30 0 32768 -7 140 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH

; COUNTER TENOR

32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768
32768

—h=h —h —h —h —h —h —h —h —h —h —h —h —h —h~
@
©
[o¥-NoNoNoNoN-NoloNoNoNoNoN-Nol

32768
32768
32768
32768

-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7

-7
-7
-7
-7

660 8192 440 8192 270 8192

1120 8192 1800 8192 1850 8192
2750 8192 2700 8192 2900 8192
3000 8192 3000 8192 3350 8192
3350 8192 3300 8192 3590 8192
0 8192 0 8192 0 8192 0 8192 ©
-6 8192 -14 8192 -24 8192 -10

-23 8192 -18 8192 -24 8192
-24 8192 -20 8192 -36 8192
-38 8192 -20 8192 -36 8192
80 8192 70 8192 40 8192 40
90 8192 80 8192 90 8192 80
120 8192 100 8192 100 8192
130 8192 120 8192 120 8192
140 8192 120 8192 120 8192

800 8192 400 8192 350 8192

430 8192 370 ;FREQ

820 8192 630 ;FREQ
2700 8192 2750 ;FREQ
3000 8192 3000 ;FREQ
3300 8192 3400 ;FREQ
;dB

8192 -20 ;dB

-26 8192 -23 ;dB

-22 8192 -30 ;dB

-34 8192 -30 ;dB

8192 40 ;BAND WIDTH

8192 60 ;BAND WIDTH

100 8192 100 ;BAND WIDTH
120 8192 120 ;BAND WIDTH
120 8192 120 ;BAND WIDTH

450 8192 325 ;FREQ

1150 8192 1600 8192 1700 8192 800 8192 700 ;FREQ
2800 8192 2700 8192 2700 8192 2830 8192 2530 ;FREQ
3500 8192 3300 8192 3700 8192 3500 8192 2500 ;FREQ



f 50 0 32768
f 51 0 32768
f 52 0 32768
f 53 0 32768
f 54 0 32768
f 55 0 32768
f 56 0 32768
f 57 0 32768
f 58 0 32768
f 59 0 32768
f 60 0 32768
; SOPRANO

f 61 0 32768
f 62 0 32768
f 63 0 32768
f 64 0 32768
f 65 0 32768
f 66 0 32768
f 67 0 32768
f 68 0 32768
f 69 0 32768
f 70 0 32768
f 71 0 32768
f 72 0 32768
f 73 0 32768
f 74 0 32768
f 75 0 32768
7 p4 =

!p5:

; p6 =

7 p7 =

; P8 =
;P9 =

; ploe =

; pll = input
; pl2 = input
e p4
i10 10 50
ii18 78
i1 16 150
i1 24 200
i1 32 400
e

</CsScore>

-7
-7
-7
-7
-7
-7
-7
-7
-7
-7
-7

4950 8192 4950 8192 4950 8
0 8192 0 8192 0 8192 0 819
-4 8192 -24 8192 -20 8192
-20 8192 -30 8192 -30 8192
-36 8192 -35 8192 -36 8192
-60 8192 -60 8192 -60 8192
50 8192 60 8192 50 8192 70
60 8192 80 8192 100 8192 8
170 8192 120 8192 120 8192
180 8192 150 8192 150 8192
200 8192 200 8192 200 8192

-7 800 8192 350 8192 270 8192

192 4950 8192 4950 ;FREQ
20 ;dB

-9 8192 -12 ;dB

-16 8192 -30 ;dB

-28 8192 -40 ;dB

-55 8192 -64 ;dB

8192 50 ;BAND WIDTH
© 8192 60 ;BAND WIDTH

100 8192 170 ;BAND WIDTH
130 8192 180 ;BAND WIDTH
135 8192 200 ;BAND WIDTH

450 8192 325 ;FREQ

-7
-7
-7
-7
-7
-7

1150 8192 2000 8192 2140 8192
2900 8192 2800 8192 2950 8192
3900 8192 3600 8192 3900 8192
4950 8192 4950 8192 4950 8192
0 8192 0 8192 0 8192 0 8192 0
-6 8192 -20 8192 -12 8192 -11

800 8192 700 ;FREQ
2830 8192 2700 ;FREQ
3800 8192 3800 ;FREQ
4950 8192 4950 ;FREQ
;dB

8192 -16 ;dB

-7
-7
-7
-7
-7
-7
-7
-7

-32 8192 -15 8192 -26 8192
-20 8192 -40 8192 -26 8192
-50 8192 -56 8192 -44 8192
80 8192 60 8192 60 8192 70
90 8192 90 8192 90 8192 80
120 8192 100 8192 100 8192
130 8192 150 8192 120 8192
140 8192 200 8192 120 8192

-22 8192 -35 ;dB

-22 8192 -40 ;dB

-50 8192 -60 ;dB

8192 50 ;BAND WIDTH

8192 60 ;BAND WIDTH

100 8192 170 ;BAND WIDTH
130 8192 180 ;BAND WIDTH
135 8192 200 ;BAND WIDTH

SO
SO

p5
10
77
11
22
80

fundemental begin value (c.p.s.)
fundemental end value
vowel begin value (0 - 1
vowel end value
bandwidth factor begin (suggested range 0 - 2)
bandwidth factor end
voice (O=bass; 1=tenor; 2=counter_tenor; 3=alto; 4=soprano)
: VCO - noise)

aeiou)

urce begin (0 - 1

urce end

p6 p7 p8 p9 ple pll pl2
00 1 2 0 0 [¢] o]

1 (0] 1 0 1 [0] ¢}
8 0 1 1 0 2 1 1
01 [c] 0.2 0 3 1 c]
00 1 0.2 0 4 [c] 1

</CsoundSynthesizer>

CONCLUSION

These examples have hopefully demonstrated the strengths of subtractive synthesis in its
simplicity, intuitive operation and its ability to create organic sounding timbres. Further research

could explore Csound's other filter opcodes including

esoteric phaserl, phaser2 and resony.

vcomb,

wguidel, wguide? and the more



22. AMPLITUDE AND RING MODULATION

INTRODUCTION

Amplitude-modulation (AM) means, that one oscillator varies the volume/amplitude of an other.
If this modulation is done very slowly (1 Hz to 10 Hz) it is recognised as tremolo. Volume-
modulation above 10 Hz leads to the effect, that the sound changes its timbre. So called side-
bands appear.

Example 04C01.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1

aRaise expseg 2, 20, 100

aModSine poscil 0.5, aRaise, 1

aDCOffset = 0.5 ; we want amplitude-modulation
aCarSine poscil 0.3, 440, 1

out aCarSine*(aModSine + aDCOffset)

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1

i10 25

e

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

THEORY, MATHEMATICS AND SIDEBANDS

The side-bands appear on both sides of the main frequency. This means (freql-freq2) and
(freql+freq2) appear.

The sounding result of the following example can be calculated as this: freql = 440Hz, freq2 =
40 Hz -> The result is a sound with [400, 440, 480] Hz.

The amount of the sidebands can be controlled by a DC-offset of the modulator.

Example 04C02.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

Sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1

aoffset linseg 0, 1, 0, 5, 0.6, 3, 0
aSinel poscil 0.3, 40 , 1

aSine2 poscil 0.3, 440, 1

out (aSinel+aOffset)*aSine2

endin

</CsInstruments>
<CsScore>
f 10 1024 10 1
i10 10



e

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

Ring-modulation is a special-case of AM, without DC-offset (DC-Offset = 0). That means the
modulator varies between -1 and +1 like the carrier. The sounding difference to AM is, that RM
doesn't contain the carrier frequency.

(If the modulator is unipolar (oscillates between 0 and +1) the effect is called AM.)

MORE COMPLEX SYNTHESIS USING RING MODULATION
AND AMPLITUDE MODULATION

If the modulator itself has more harmonics, the result becomes easily more complex.

Carrier freq: 600 Hz
Modulator fregs: 200Hz with 3 harmonics = [200, 400, 600] Hz
Resulting fregs: [0, 200, 400, <-600->, 800, 1000, 1200]

Example 04C03.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1 ; Ring-Modulation (no DC-Offset)

aSinel poscil 0.3, 200, 2 ; -> [200, 400, 600] Hz
aSine2 poscil 0.3, 600, 1

out aSinel*aSine2

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ; sine

f 20 1024 10 1 1 1; 3 harmonics
i105

e

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

Using an inharmonic modulator frequency also makes the result sound inharmonic. Varying the
DC-offset makes the sound-spectrum evolve over time.

Modulator fregs: [230, 460, 690]

Resulting fregs: [ (-)90, 140, 370, <-600->, 830, 1060, 1290]

(negative frequencies become mirrowed, but phase inverted)

Example 04C04.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1 ; Amplitude-Modulation

aOffset linseg 0, 1, 0, 5, 1, 3, 0

aSinel poscil 0.3, 230, 2 ; -> [230, 460, 690] Hz
aSine2 poscil 0.3, 600, 1

out (aSinel+aOffset)*aSine2

endin

</CsInstruments>
<CsScore>
f 10 1024 10 1 ; sine



f 20 1024 10 1 1 1; 3 harmonics
i10 10
e

</CsScore>
</CsoundSynthesizer>



23. FREQUENCY MODULATION

FROM VIBRATO TO THE EMERGENCE OF SIDEBANDS

A vibrato is a periodical change of pitch, normally less than a halftone and with a slow changing-
rate (around 5Hz). Frequency modulation is usually done with sine-wave oscillators.

Example 04D01.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

Sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1

aMod poscil 10, 5 , 1 ; 5 Hz vibrato with 10 Hz modulation-width
aCar poscil 0.3, 440+aMod, 1 ; -> vibrato between 430-450 Hz
outs aCar, aCar

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
i102

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

When the modulation-width becomes increased, it becomes harder to describe the base-
frequency, but it is still a vibrato.

Example 04D02.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

Sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1

aMod poscil 90, 5 , 1 ; modulate 90Hz ->vibrato from 350 to 530 hz
aCar poscil 0.3, 440+aMod, 1

outs aCar, aCar

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
il102

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

THE SIMPLE MODULATOR->CARRIER PAIRING

Increasing the modulation-rate leads to a different effect. Frequency-modulation with more than
20Hz is no longer recognized as vibrato. The main-oscillator frequency lays in the middle of the
sound and sidebands appear above and below. The number of sidebands is related to the
modulation amplitude, later this is controlled by the so called modulation-index.

Example 04D03.csd

<CsoundSynthesizer>
<CsOptions>



-0 dac
</CsOptions>
<CsInstruments>
Sr = 48000
ksmps = 32
nchnls = 2
0dbfs = 1

instr 1

aRaise linseg 2, 10, 100 ;increase modulation from 2Hz to 100Hz
aMod poscil 10, aRaise , 1

aCar poscil 0.3, 440+aMod, 1

outs aCar, aCar

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
il10e 12

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011

Hereby the main-oscillator is called carrier and the one changing the carriers frequency is the
modulator. The modulation-index: | = mod-amp/mod-freq. Making changes to the modulation-
index, changes the amount of overtones, but not the overall volume. That gives the possibility
produce drastic timbre-changes without the risk of distortion.

When carrier and modulator frequency have integer ratios like 1:1, 2:1, 3:2, 5:4.. the sidebands
build a harmonic series, which leads to a sound with clear fundamental pitch.

Example 04D04.csd

<CsoundSynthesizer>

<CsOptions>

-0 dac

</CsOptions>

<CsInstruments>

Sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1

kCarFreq = 660 ; 660:440 = 3:2 -> harmonic spectrum
kModFreq = 440

kIndex = 15 ; high Index.. try lower values like 1, 2, 3..
kIndexM = 0

kMaxDev = kIndex*kModFreq

kMinDev = kIndexM*kModFreq

kvarDev = kMaxDev-kMinDev

kModAmp = kMinDev+kVarDev

aModulator poscil kModAmp, kModFreq, 1
aCarrier poscil 0.3, kCarFreg+aModulator, 1
outs aCarrier, aCarrier

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
i10 15

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

Otherwise the spectrum of the sound is inharmonic, which makes it metallic or noisy.
Raising the modulation-index, shifts the energy into the side-bands. The side-bands distance is:
Distance in Hz = (carrierFreq)-(k*modFreq) | k ={1, 2, 3,4 ..}

This calculation can result in negative frequencies. Those become reflected at zero, but with
inverted phase! So negative frequencies can erase existing ones. Frequencies over Nyquist-
frequency (half of samplingrate) "fold over" (aliasing).

THE JOHN CHOWNING FM MODEL OF A TRUMPET

Composer and researcher Jown Chowning worked on the first digital implementation of FM in the
1970's.



Using envelopes to control the modulation index and the overall amplitude gives you the
possibility to create evolving sounds with enormous spectral variations. Chowning showed these
possibilities in his pieces, where he let the sounds transform. In the piece Sabelithe a drum sound
morphes over the time into a trumpet tone.

Example 04D05.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>

<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1 ; simple way to generate a trumpet-like sound
kCarFreq = 440

kModFreq = 440

kIndex = 5

kIndexM = 0

kMaxDev = kIndex*kModFreq
kMinDev = kIndexM * kModFreq
kvarDev = kMaxDev-kMinDev

aEnv expseg .001, 0.2, 1, p3-0.3, 1, 0.2, 0.001
aModAmp = kMinDev+kVarDev*aEnv

aModulator poscil aModAmp, kModFreq, 1

aCarrier poscil 0.3*aEnv, kCarFreg+aModulator, 1
outs aCarrier, aCarrier

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
i102

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

The following example uses the same instrument, with different settings to generate a bell-like
sound:

Example 04D06.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>

<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1 ; bell-like sound
kCarFreq = 200 ; 200/280 = 5:7 -> inharmonic spectrum
kModFreq = 280

kIndex = 12

kIndexM = 0

kMaxDev = kIndex*kModFreq
kMinDev = kIndexM * kModFreq

kvarDev = kMaxDev-kMinDev

aEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
aModAmp = kMinDev+kVarDev*aEnv

aModulator poscil aModAmp, kModFreq, 1

aCarrier poscil 0.3*aEnv, kCarFreg+aModulator, 1
outs aCarrier, aCarrier

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
i1009

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

MORE COMPLEX FM ALGORITHMS



Combining more than two oscillators (operators) is called complex FM synthesis. Operators can
be connected in different combinations often 4-6 operators are used. The carrier is always the
last operator in the row. Changing it's pitch, shifts the whole sound. All other operators are
modulators, changing their pitch alters the sound-spectrum.

Two into One: M1+M2 -> C

The principle here is, that (M1:C) and (M2:C) will be separate modulations and later added
together.

Example 04D07.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

Sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1

aMod1 poscil 200, 700, 1

aMod2 poscil 1800, 290, 1

aSig poscil 0.3, 440+aModl+aMod2, 1
outs aSig, aSig

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
i103

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

In series: M1->M2->C

This is much more complicated to calculate and sound-timbre becomes harder to predict,
because MI:M2 produces a complex spectrum (W), which then modulates the carrier (W:C).

Example 04D08.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1

aModl poscil 200, 700, 1

aMod2 poscil 1800, 290+aModl, 1
aSig poscil 0.3, 440+aMod2, 1
outs aSig, aSig

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
il103

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

PHASE MODULATION - THE YAMAHA DX7 AND FEEDBACK
FM

There is a strong relation between frequency modulation and phase modulation, as both
techniques influence the oscillator's pitch, and the resulting timbre modifications are the same.



If you'd like to build a feedbacking FM system, it will happen that the self-modulation comes to a
zero point, which stops the oscillator forever. To avoid this, it is more practical to modulate the
carriers table-lookup phase, instead of its pitch.

Even the most famous FM-synthesizer Yamaha DX7 is based on the phase-modulation (PM)
technique, because this allows feedback. The DX7 provides 7 operators, and offers 32 routing
combinations of these. (http://yala.freeservers.com/t2synths.htm#DX7)

To build a PM-synth in Csound tablei opcode needs to be used as oscillator. In order to step
through the f-table, a phasor will output the necessary steps.

Example 04D09.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1 ; simple PM-Synth

kCarFreq 200

kModFreq 280

kModFactor = kCarFreq/kModFreq

kIndex = 12/6.28 ; 12/2pi to convert from radians to norm. table index
aEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001
aModulator poscil kIndex*aEnv, kModFreq, 1
aPhase phasor kCarFreq

aCarrier tablei aPhase+aModulator, 1, 1, 0, 1
outs (aCarrier*akEnv), (aCarrier*aEnv)

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
i1e09

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

Let's use the possibilities of self-modulation (feedback-modulation) of the oscillator. So in the
following example, the oscillator is both modulator and carrier. To control the amount of
modulation, an envelope scales the feedback.

Example 04D10.csd

<CsoundSynthesizer>
<CsOptions>

-o dac

</CsOptions>
<CsInstruments>

Sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

instr 1 ; feedback PM

kCarFreq = 200

kFeedbackAmountEnv linseg 0, 2, 0.2, 0.1, 0.3, 0.8, 0.2, 1.5, 0
aAmpEnv expseg .001, 0.001, 1, 0.3, 0.5, 8.5, .001

aPhase phasor kCarFreq

aCarrier init 0 ; init for feedback

aCarrier tablei aPhase+(aCarrier*kFeedbackAmountEnv), 1, 1, 0, 1
outs aCarrier*aAmpEnv, aCarrier*aAmpEnv

endin

</CsInstruments>

<CsScore>

f 10 1024 10 1 ;Sine wave for table 1
i1009

</CsScore>

</CsoundSynthesizer>

; written by Alex Hofmann (Mar. 2011)

The last example features modulation of the buzz opcode. The buzz opcode can have a lot of
harmonic overtones and frequency modulation of the buzz opcode gives even more overtones.
Four different voices play at the same time, forming strange chords that use



glissando/portamento to move from one chord to the next. This .csd file is regenerative,
everytime you run it, it should show a different performance.

EXAMPLE 04D1l.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

; By Bjern Houdorf, April 2012

sr = 44100
ksmps = 8
nchnls = 2
0dbfs = 1

; Global initializations ("Instrument 0")

seed 0; New pitches,
gkfreql init 0; every time you
gkfreqg2 init 0; run this file
gkfreq3 init [c]
gkfreq4 init ¢}
gimidial init 60; The 4 voices start
gimidib1 init 60; at different
gimidia2 init 64; MIDI frequencies
gimidib2 init 64
gimidia3 init 67
gimidib3 init 67
gimidia4 init 70
gimidib4 init 70

; Function Table

giFt1 ftgen 0, 0, 16384, 10, 1; Sine wave

instr 1; Master control pitch for instrument 2

test:

idurtest poisson 20; Duration of each test loop

timout 0, idurtest, execute
reinit test

execute:

gimidial = gimidib1

itall random -4, 4

gimidib1l = gimidibl + itall

gimidia2 = gimidib2



ital2 random -4, 4

gimidib2 = gimidib2 + ital2

gimidia3 = gimidib3

ital3 random -4, 4

gimidib3 = gimidib3 + ital3

gimidiad4 = gimidib4

ital4 random -4, 4

gimidib4 = gimidib4 + ital4

idiv poisson 4

idurx = 0.01; Micro end segment to create

;a held final frequency value

ifreqla = cpsmidinn(gimidial)
ifreqib = cpsmidinn(gimidib1)

; Portamento frequency ramp:

gkfreql linseg ifreqia, idurtest/idiv, ifreqlb, idurx, ifreqib
ifreq2a = cpsmidinn(gimidia2)
ifreq2b = cpsmidinn(gimidib2)
gkfreq2 linseg ifreq2a, idurtest/idiv, ifreq2b, idurx, ifreq2b
ifreq3a = cpsmidinn(gimidia3)
ifreq3b = cpsmidinn(gimidib3)

gkfreqg3 linseg ifreq3a, idurtest/idiv, ifreq3b, idurx, ifreq3b

ifreqda = cpsmidinn(gimidia4)

ifreq4b = cpsmidinn(gimidib4)

gkfreq4 linseg ifreq4a, idurtest/idiv, ifreq4b, idurx, ifreq4b
endin

instr 2 ; Oscillators

iamp = p4

irise = p5

idur = p3

idec = p6

kamp = p7

imodfrq = p8

iharm = p9 ; Number of harmonics
ky linen iamp, irise, idur, idec
kampfreq = 2

kampa oscili kamp, kampfreq, giFtl



; Different phase for the 4 voices

klfol oscili kampa, imodfrq, giFti, ©

klfo2 oscili kampa, imodfrq, giFtl, 0.25

k1fo3 oscili kampa, imodfrq, giFtl1, 0.50

klfo4 oscili kampa, imodfrq, giFt1, 0.75

kzfrq = 0.1; Velocity of amplitude oscillation
kampvoice = 0.5; Amplitude of each voice

; Amplitude between -0.5 and 0.5

kx1 oscili 0.5, kzfrg, giFti, ©

kx2 oscili 0.5, kzfrqg, giFt1, 0.25
kx3 oscili 0.5, kzfrg, giFt1, 0.50
kx4 oscili 0.5, kzfrqg, giFti, 0.75

; Add 0.5 so amplitude oscillates between 0 and 1

k1 = kx1+0.5
k2 = kx2+0.5
k3 = kx3+0.5
k4 = kx4+0.5

; Minimize interference between chorus oscillators

itilf random -5, 5

asigi1l buzz ky*k1l, (2.02*gkfreql)+itilf+klfol, iharm, giFt1l
asigl2 buzz ky*k1, gkfreql +klfol, iharm, giFt1; Voice 1
asigl3 buzz ky*k1, (1.51*gkfreql)+itilf+klfol, iharm, giFt1
aal = asigli+asigl2+asigl3

asig21 buzz ky*k2, (2.01*gkfreq2)+itilf+klfo2, iharm, giFt1l
asig22 buzz ky*k2, gkfreq2 +klfo2, iharm, giFtl; Voice 2
asig23 buzz ky*k2, (1.51*gkfreq2)+itilf+klfo2, iharm, giFt1l
aa2 = asig2il+asig22+asig23

asig31 buzz ky*k3, (2.01*gkfreq3)+itilf+klfo3, iharm, giFt1
asig32 buzz ky*k3, gkfreq3 +klfo3, iharm, giFt1; Voice 3
asig33 buzz ky*k3, (1.51*gkfreq3)+itilf+klfo3, iharm, giFt1
aa3 = asig31+asig32+asig33

asig41l buzz ky*k4, (2.01*gkfreq4)+itilf+klfo4, iharm, giFt1l
asig42 buzz ky*k4, gkfreq4 +klfo4, iharm, giFtl; Voice 4
asig43 buzz ky*k4, (1.51*gkfreq4)+itilf+klfo4, iharm, giFt1

aa4 = asig4l+asig42+asig43



outs aal+aa3, aa2+aa4

endin
</CsInstruments>

<CsScore>

; Master control instrument
; Inst start dur

i1 0] 3600

; Oscillators
; inst start idur iamp irise idec kamp imodfrq iharm

i2 0 3600 0.3 4 20 0.10 7 16

</CsScore>

</CsoundSynthesizer>



24. WAVESHAPING

Waveshaping can in some ways be thought of as a relation to modulation techniques such as
frequency or phase modulation. Waveshaping can achieve quite dramatic sound tranformations
through the application of a very simple process. In FM (frequency modulation) synthesis
modulation occurs between two oscillators, waveshaping is implemented using a single oscillator
(usually a simple sine oscillator) and a so-called 'transfer function'. The transfer function
transforms and shapes the incoming amplitude values using a simple lookup process: if the
incoming value is x, the outgoing value becomes y. This can be written as a table with two
columns. Here is a simple example:

Incoming (x) Value Outgoing (y) Value

-0.5 or lower -1

between -0.5 and 0.5 : remain unchanged

0.5 or higher 1

lllustrating this in an x/y coordinate system results in the following image:

Ay
+1
10.5
! | : >
-1 -0.5 0.5 1 X
+-0.5
+ -1

BASIC IMPLEMENTATION MODEL

Implementing this as Csound code is pretty straightforward. The x-axis is the amplitude of every
single sample, which is in the range of -1 to +1.! This number has to be used as index to a table
which stores the transfer function. To create a table like the one above, you can use Csound's
sub-routine GENO72 . This statement will create a table of 4096 points in the desired shape:

giTrnsFnc ftgen 0, O, 4096, -7, -0.5, 1024, -0.5, 2048, 0.5, 1024, 0.5



ftable 101: 4096 points, max 0.500
Choose Graph [[ETIEEINE

Now, two problems must be solved. First, the index of the function table is not -1 to +1. Rather,
it is either O to 4095 in the raw index mode, or O to 1 in the normalized mode. The simplest
solution is to use the normalized index and scale the incoming amplitudes, so that an amplitude
of -1 becomes an index of 0, and an amplitude of 1 becomes an index of 1:

aIndx = (aAmp + 1) / 2

The other problem stems from the difference in the accuracy of possible values in a sample and
in a function table. Every single sample is encoded in a 32-bit floating point number in standard
audio applications - or even in a 64-bit float in recent Csound2 A table with 4096 points results
in a 12-bit number, so you will have a serious loss of accuracy (= sound quality) if you use the
table values directly.4 Here, the solution is to use an interpolating table reader. The opcode
tablei (instead of table) does this job. This opcode then needs an extra point in the table for

interpolating, so it is wise to use 4097 as size instead of 4096.2

This is the code for the simple waveshaping with the transfer function which has been discussed
so far:

EXAMPLE 04E01.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giTrnsFnc ftgen 0, 0, 4097, -7, -0.5, 1024, -0.5, 2048, 0.5, 1024, 0.5
giSine ftgen 0, 0, 1024, 10, 1

instr 1

aAmp poscil 1, 400, giSine

aIndx = (aAmp + 1) / 2

awavShp tablei aIndx, giTrnsFnc, 1
outs awavShp, awWavShp

endin

</CsInstruments>
<CsScore>

i10 10

</CsScore>
</CsoundSynthesizer>



CHEBYCHEV POLYNOMIALS AS TRANSFER FUNCTIONS

1. Use the statement Odbfs=1 in the orchestra header to ensure this.~

2. See chapter 03D:FUNCTION TABLES to find more information about creating tables.~

3. This is the 'd" in some abbreviations like Csound5.17-gnu-win32-d.exe (d = double precision
floats)>

4. Of course you can use an even smaller table if your goal is the degradation of the
incoming sound (“distortion"). See chapter 05F for some examples.~

5. A table size of a power-of-two plus one inserts the "extended guard point" as an extension
of the last table value, instead of copying the first index to this location. See
http://www.csounds.com/manual/html/f.html for more information.~



2 5 - GRANULAR SYNTHESIS

CONCEPT BEHIND GRANULAR SYNTHESIS

Granular synthesis is a technique in which a source sound or waveform is broken into many
fragments, often of very short duration, which are then restructured and rearranged according
to various patterning and indeterminacy functions.

If we imagine the simplest possible granular synthesis algorithm in which a precise fragment of
sound is repeated with regularity, there are two principle attributes of this process that we are
most concerned with. Firstly the duration of each sound grain is significant: if the grain duration
if very small, typically less than 0.02 seconds, then less of the characteristics of the source
sound will be evident. If the grain duration is greater than 0.02 then more of the character of
the source sound or waveform will be evident. Secondly the rate at which grains are generated
will be significant: if grain generation is below 20 hertz, i.e. less than 20 grains per second, then
the stream of grains will be perceived as a rhythmic pulsation; if rate of grain generation
increases beyond 20 Hz then individual grains will be harder to distinguish and instead we will
begin to perceive a buzzing tone, the fundamental of which will correspond to the frequency of
grain generation. Any pitch contained within the source material is not normally perceived as the
fundamental of the tone whenever grain generation is periodic, instead the pitch of the source
material or waveform will be perceived as a resonance peak (sometimes referred to as a
formant); therefore transposition of the source material will result in the shifting of this
resonance peak.

GRANULAR SYNTHESIS DEMONSTRATED USING FIRST
PRINCIPLES

The following example exemplifies the concepts discussed above. None of Csound's built-in
granular synthesis opcodes are used, instead schedkwhen in instrument 1 is used to precisely
control the triggering of grains in instrument 2. Three notes in instrument 1 are called from the
score one after the other which in turn generate three streams of grains in instrument 2. The
first note demonstrates the transition from pulsation to the perception of a tone as the rate of
grain generation extends beyond 20 Hz. The second note demonstrates the loss of influence of
the source material as the grain duration is reduced below 0.02 seconds. The third note
demonstrates how shifting the pitch of the source material for the grains results in the shifting
of a resonance peak in the output tone. In each case information regarding rate of grain
generation, duration and fundamental (source material pitch) is output to the terminal every 1/2
second so that the user can observe the changing parameters.

It should also be noted how the amplitude of each grain is enveloped in instrument 2. If grains
were left unenveloped they would likely produce clicks on account of discontinuities in the
waveform produced at the beginning and ending of each grain.

Granular synthesis in which grain generation occurs with perceivable periodicity is referred to as
synchronous granular synthesis. granular synthesis in which this periodicity is not evident is
referred to as asynchronous granular synthesis.

EXAMPLE 04F01.csd

<CsoundSynthesizer>

<CsOptions>
-odac -mo
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 1
nchnls = 1
0dbfs = 1

gisine ftgen ©0,0,4096,10,1



instr 1
kRate expon p4,p3,p5 ; rate of grain generation
kTrig metro kRate ; a trigger to generate grains
kbur expon p6,p3,p7 ; grain duration
kForm expon p8,p3,p9 ; formant (spectral centroid)
H p1l p2 p3 p4
schedkwhen kTrig,0,0,2, 0, kDur,kForm ;trigger a note(grain) in instr 2
;print data to terminal every 1/2 second
printks "Rate:%5.2F Dur:%5.2F Formant:%5.2F%n", 0.5, kRate , kDur, kForm
endin

instr 2
iForm = p4
aEnv linseg ©0,0.005,0.2,p3-0.01,0.2,0.005,0
asig poscil aEnv, iForm, giSine

out asSig
endin
</CsInstruments>
<CsScore>
;p4 = rate begin
;p5 = rate end
;p6 = duration begin
;p7 = duration end
;p8 = formant begin
;p9 = formant end

; Pl p2 p3 p4 p5 pé p7 p8 p9

il 0 301 100 0.02 0.02 400 400 ;demo of grain generation rate
i1 3110 10 10 0.4 0.01 400 400 ;demo of grain size

i1 42 20 50 50 0.02 0.02 100 5000 ;demo of changing formant

e

<

/CsScore>

</CsoundSynthesizer>

GRANULAR SYNTHESIS OF VOWELS: FOF

The principles outlined in the previous example can be extended to imitate vowel sounds
produced by the human voice. This type of granular synthesis is referred to as FOF (fonction
d'onde formatique) synthesis and is based on work by Xavier Rodet on his CHANT program at
IRCAM. Typically five synchronous granular synthesis streams will be used to create five different
resonant peaks in a fundamental tone in order to imitate different vowel sounds expressible by
the human voice. The most crucial element in defining a vowel imitation is the degree to which
the source material within each of the five grain streams is transposed. Bandwidth (essentially
grain duration) and intensity (loudness) of each grain stream are also important indicators in
defining the resultant sound.

Csound has a number of opcodes that make working with FOF synthesis easier. We will be using
fof.

Information regarding frequency, bandwidth and intensity values that will produce various vowel
sounds for different voice types can be found in the appendix of the Csound manual here. These
values are stored in function tables in the FOF synthesis example. GENO7, which produces linear
break point envelopes, is chosen as we will then be able to morph continuously between vowels.

EXAMPLE 04F02.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;example by Iain McCurdy

sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

instr 1
kFund expon p4,p3, p5 ; fundemental
kVow line p6,p3, p7 vowel select
kBW line p8, p3, po bandwidth factor
ivoice = p10 voice select



’

kFormi tab
kForm2 tab
kForm3 tab
kForm4 tab
kForm5s tab
kDB1 table
kDB2 table
kDB3 table
kDB4 table
kDB5 table
; read formant
kBW1 table
kBW2 table
kBW3 table
kBW4 table
kBW5 table
; Create

koct =
aFormi fof
aForm2 fof
aForm3 fof
aForm4 fof
aForm5 fof

le kVow, 1+(iVoice*15),1
le kVow, 2+(iVoice*15),1
le kVow, 3+(iVoice*15),1
le kVow, 4+(iVoice*15),1
le kvVow, 5+(iVoice*15),1

kVow, 6+(iVoice*15),1
kVow, 7+(iVoice*15),1
kVow, 8+(iVoice*15),1
kVow, 9+(iVoice*15),1
kVow, 10+(iVoice*15),1
bandwidths from tables
kVow,11+(iVoice*15),1
kVow,12+(1iVoice*15),1
kVow, 13+ (iVoice*15),1
kVow, 14+(iVoice*15),1
kVow, 15+(iVoice*15),1

1

ampdb (kDB1), kFund, kFor
1000,101,102, 3600

ampdb (kDB2), kFund, kFor
1000,101,102, 3600

ampdb (kDB3), kFund, kFor
1000,101,102,3600

ampdb (kDB4), kFund, kFor
1000,101,102, 3600

ampdb (kDB5), kFund, kFor
1000,101,102,3600

mixed
aForml,aForm2,aForm3, a
0,3,1,p3-6,1,3,0
aMix*kEnv*0.3,

g

’

aMix*KE

read formant cutoff frequenies from tables

read formant intensity values from tables

resonant formants by filtering source sound

mi, 0, kBW1l,0.003,0. .007,\

m2, 0, kBW2,0.003,0. .007,\

m3, 0, kBW3,0.003,0. .007,\

m4,0, kBw4, 0.003,0. .007,\

m5, 0, kBW5,0.003,0. .007,\

Form4, aForm5
an amplitude envelope

nv*o.3 send audio to outputs

1

;FUNCTION TABLES STORING FORMANT DATA FOR EACH OF THE FIVE VOICE TYPES

; formants are

aMix sum

KEnv linse

outs

endin
</CsInstruments>
<CsScore>
REPRESENTED
; BASS
f 1 0 32768 -7
f 2 0 32768 -7
f 3 0 32768 -7
f 4 0 32768 -7
f 5 0 32768 -7
f 6 0 32768 -7
f 7 0 32768 -7
f 8 0 32768 -7
f 9 0 32768 -7
f 10 0 32768 -7
f 11 0 32768 -7
f 12 0 32768 -7
f 13 0 32768 -7
f 14 © 32768 -7
f 15 0 32768 -7
; TENOR
f 16 0 32768 -7
f 17 © 32768 -7
f 18 0 32768 -7
f 19 0 32768 -7
f 20 0 32768 -7
f 21 0 32768 -7
f 22 0 32768 -7
f 23 0 32768 -7
f 24 0 32768 -7
f 25 0 32768 -7
f 26 0 32768 -7
f 27 0 32768 -7
f 28 0 32768 -7
f 29 0 32768 -7
f 30 0 32768 -7
;COUNTER TENOR
f 31 0 32768 -7
f 32 0 32768 -7
f 33 0 32768 -7
f 34 0 32768 -7
f 35 0 32768 -7
f 36 0 32768 -7
f 37 0 32768 -7
f 38 0 32768 -7
f 39 0 32768 -7
f 40 0 32768 -7

600 10922 400 10922 250 109

24 350 ;FREQ

1040 10922 1620
2250 10922 2400
2450 10922 2800
2750 10922 3100

10922 1750 10924
10922 2600 10924
10922 3050 10924
10922 3340 10924

600 ;FREQ
2400 ;FREQ
2675 ;FREQ
2950 ;FREQ

0 10922 0 10922 0 10924 0 ;
-7 10922 -12 10922 -30 1092
-9 10922 -9 10922 -16 10924
-9 10922 -12 10922 -22 1092
-20 10922 -18 10922 -28 109
60 10922 40 10922 60 10924
70 10922 80 10922 90 10924
110 10922 100 10922 100 109
120 10922 120 10922 120 109
130 10922 120 10922 120 109

650 8192 400 8192 290 819
1080 8192 1700 8192 187
2650 8192 2600 8192 2800
2900 8192 3200 8192 3250
3250 8192 3580 8192 3540
0 8192 0 8192 0 8192 0 8192
-6 8192 -14 8192 -15 8192 -
-7 8192 -12 8192 -18 8192 -
-8 8192 -14 8192 -20 8192 -
-22 8192 -20 8192 -30 8192
80 8192 70 8192 40 8192 40
90 8192 80 8192 90 8192 80
120 8192 100 8192 100 8192
130 8192 120 8192 120 8192
140 8192 120 8192 120 8192

660 8192 440 8192 270 8192
1120 8192 1800 8192 1850 81
2750 8192 2700 8192 2900 81
3000 8192 3000 8192 3350 81
3350 8192 3300 8192 3590 81
0 8192 0 8192 0 8192 0 8192
-6 8192 -14 8192 -24 8192 -
-23 8192 -18 8192 -24 8192
-24 8192 -20 8192 -36 8192
-38 8192 -20 8192 -36 8192

dB
4 -20 ;dB
-32 ;dB
4 -28 ;dB
24 -36 ;dB
40 ;BAND WIDTH
80 ;BAND WIDTH
24 100 ;BAND WIDTH
24 120 ;BAND WIDTH
24 120 ;BAND WIDTH

2 400 8192
0 8192 800
8192 2600
8192 2800
8192 3000
0 ;dB

10 8192 -20 ;dB

12 8192 -17 ;dB

12 8192 -14 ;dB

-26 8192 -26 ;dB

8192 40 ;BAND WIDTH

8192 60 ;BAND WIDTH

100 8192 100 ;BAND WIDTH
120 8192 120 ;BAND WIDTH
120 8192 120 ;BAND WIDTH

350 ;FREQ
8192 600 ;FREQ
8192 2700 ;FREQ
8192 2900 ;FREQ
8192 3300 ;FREQ

430 8192 370 ;FREQ

92 820 8192 630 ;FREQ
92 2700 8192 2750 ;FREQ
92 3000 8192 3000 ;FREQ
92 3300 8192 3400 ;FREQ
0 ;dB

10 8192 -20 ;dB

-26 8192 -23 ;dB

-22 8192 -30 ;dB

-34 8192 -30 ;dB



f 41 0 32768 -7 80 8192 70 8192 40 8192 40 8192 40 ;BAND WIDTH

f 42 0 32768 -7 90 8192 80 8192 90 8192 80 8192 60 ;BAND WIDTH

f 43 0 32768 -7 120 8192 100 8192 100 8192 100 8192 100 ;BAND WIDTH
f 44 0 32768 -7 130 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
f 45 0 32768 -7 140 8192 120 8192 120 8192 120 8192 120 ;BAND WIDTH
;ALTO

f 46 0 32768 -7 800 8192 400 8192 350 8192 450 8192 325 ;FREQ

f 47 0 32768 -7 1150 8192 1600 8192 1700 8192 800 8192 700 ;FREQ

f 48 © 32768 -7 2800 8192 2700 8192 2700 8192 2830 8192 2530 ;FREQ
f 49 0 32768 -7 3500 8192 3300 8192 3700 8192 3500 8192 2500 ;FREQ
f 50 0 32768 -7 4950 8192 4950 8192 4950 8192 4950 8192 4950 ;FREQ
f 51 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB

f 52 0 32768 -7 -4 8192 -24 8192 -20 8192 -9 8192 -12 ;dB

f 53 0 32768 -7 -20 8192 -30 8192 -30 8192 -16 8192 -30 ;dB

f 54 0 32768 -7 -36 8192 -35 8192 -36 8192 -28 8192 -40 ;dB

f 55 0 32768 -7 -60 8192 -60 8192 -60 8192 -55 8192 -64 ;dB

f 56 0 32768 -7 50 8192 60 8192 50 8192 70 8192 50 ;BAND WIDTH

f 57 @ 32768 -7 60 8192 80 8192 100 8192 80 8192 60 ;BAND WIDTH

f 58 0 32768 -7 170 8192 120 8192 120 8192 100 8192 170 ;BAND WIDTH
f 59 0 32768 -7 180 8192 150 8192 150 8192 130 8192 180 ;BAND WIDTH
f 60 0 32768 -7 200 8192 200 8192 200 8192 135 8192 200 ;BAND WIDTH
; SOPRANO

f 61 0 32768 -7 800 8192 350 8192 270 8192 450 8192 325 ;FREQ

f 62 0 32768 -7 1150 8192 2000 8192 2140 8192 800 8192 700 ;FREQ

f 63 0 32768 -7 2900 8192 2800 8192 2950 8192 2830 8192 2700 ;FREQ
f 64 0 32768 -7 3900 8192 3600 8192 3900 8192 3800 8192 3800 ;FREQ
f 65 0 32768 -7 4950 8192 4950 8192 4950 8192 4950 8192 4950 ;FREQ
f 66 0 32768 -7 0 8192 0 8192 0 8192 0 8192 0 ;dB

f 67 0 32768 -7 -6 8192 -20 8192 -12 8192 -11 8192 -16 ;dB

f 68 0 32768 -7 -32 8192 -15 8192 -26 8192 -22 8192 -35 ;dB

f 69 0 32768 -7 -20 8192 -40 8192 -26 8192 -22 8192 -40 ;dB

f 70 0 32768 -7 -50 8192 -56 8192 -44 8192 -50 8192 -60 ;dB

f 71 0 32768 -7 80 8192 60 8192 60 8192 70 8192 50 ;BAND WIDTH

f 72 0 32768 -7 90 8192 90 8192 90 8192 80 8192 60 ;BAND WIDTH

f 73 0 32768 -7 120 8192 100 8192 100 8192 100 8192 170 ;BAND WIDTH
f 74 0 32768 -7 130 8192 150 8192 120 8192 130 8192 180 ;BAND WIDTH
f 75 0 32768 -7 140 8192 200 8192 120 8192 135 8192 200 ;BAND WIDTH
f 101 0 4096 10 1  ;SINE WAVE

;EXPONENTIAL CURVE USED TO DEFINE THE ENVELOPE SHAPE OF FOF PULSES:
f 102 0 1024 19 0.5 0.5 270 0.5

; p4 = fundamental begin value (c.p.s.)

; p5 = fundamental end value

; p6 = vowel begin value (0 - 1 aeiou)

; p7 = vowel end value

; p8 = bandwidth factor begin (suggested range 0 - 2)
; P9 = bandwidth factor end

; plO® = voice (O=bass; 1=tenor; 2=counter_tenor; 3=alto; 4=soprano)
; p1 p2 p3 p4 p5 p6 p7 p8 p9 plo

i1 0 10 50 100 0 1 2 0 0

i1 8 78 77 1 [¢] 1 0 1

i1 16 150 118 © 1 1 0 2

i1 24 200 220 1 [} 0.2 0 3

i1 32 400 800 0 1 0.2 0 4

e

</CsScore>

</CsoundSynthesizer>

ASYNCHRONOUS GRANULAR SYNTHESIS

The previous two examples have played psychoacoustic phenomena associated with the
perception of granular textures that exhibit periodicity and patterns. If we introduce
indeterminacy into some of the parameters of granular synthesis we begin to lose the coherence
of some of these harmonic structures.

The next example is based on the design of example 04F01.csd. Two streams of grains are
generated. The first stream begins as a synchronous stream but as the note progresses the
periodicity of grain generation is eroded through the addition of an increasing degree of gaussian
noise. It will be heard how the tone metamorphosizes from one characterized by steady purity
to one of fuzzy airiness. The second the applies a similar process of increasing indeterminacy to
the formant parameter (frequency of material within each grain).

Other parameters of granular synthesis such as the amplitude of each grain, grain duration,
spatial location etc. can be similarly modulated with random functions to offset the
psychoacoustic effects of synchronicity when using constant values.

EXAMPLE 04F03.csd



<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 1
nchnls = 1
0dbfs = 1

giwave ftgen 0,0,2/10,10,1,1/2,1/4,1/8,1/16,1/32,1/64

instr 1 ;grain generating instrument 1

kRate = p4
kTrig metro kRate ; a trigger to generate grains
kDur = p5
kForm = p6

;note delay time (p2) is defined using a random function -

;- beginning with no randomization but then gradually increasing

kDelayRange transeg 0,1,0,0, p3-1,4,0.03

kDelay gauss kDelayRange

H pl p2 p3 p4

schedkwhen kTrig,0,0,3, abs(kDelay), kbDur,kForm ;trigger a note

(grain) in instr 3
endin

instr 2 ;grain generating instrument 2

kRate = p4
kTrig metro kRate ; a trigger to generate grains
kDur = p5

;formant frequency (p4) is multiplied by a random function -

;- beginning with no randomization but then gradually increasing

kForm = p6

kFormOSRange transeg 0,1,0,0, p3-1,2,12 ;range defined in semitones

kFormoS gauss kFormOSRange

; pl p2 p3 p4

schedkwhen kTrig,®,0,3, 0, kDur,kForm*semitone(kForm0S)

endin

instr 3 ;grain sounding instrument
iForm = p4
aEnv linseg ©0,0.005,0.2,p3-0.01,0.2,0.005,0
asig poscil aEnv, iForm, giWave
out asig
endin

</CsInstruments>

<CsScore>

;p4 = rate

;p5 = duration

;p6 = formant

; Pl p2 p3 p4 p5 pé
i1 0 12 200 0.02 400
i 2 12.5 12 200 0.02 400
e

</CsScore>

</CsoundSynthesizer>

SYNTHESIS OF DYNAMIC SOUND SPECTRA: GRAIN3

The next example introduces another of Csound's built-in granular synthesis opcodes to
demonstrate the range of dynamic sound spectra that are possible with granular synthesis.

Several parameters are modulated slowly using Csound's random spline generator rspline. These
parameters are formant frequency, grain duration and grain density (rate of grain generation).
The waveform used in generating the content for each grain is randomly chosen using a slow
sample and hold random function - a new waveform will be selected every 10 seconds. Five
waveforms are provided: a sawtooth, a square wave, a triangle wave, a pulse wave and a band
limited buzz-like waveform. Some of these waveforms, particularly the sawtooth, square and
pulse waveforms, can generate very high overtones, for this reason a high sample rate is
recommended to reduce the risk of aliasing (see chapter 01A).

Current values for formant (cps), grain duration, density and waveform are printed to the
terminal every second. The key for waveforms is: l:sawtooth; 2:square; 3:triangle; 4:pulse;



5:buzz.

EXAMPLE 04F04.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>
;example by Iain McCurdy

sr = 96000
ksmps = 16
nchnls = 1
0dbfs = 1

;waveforms used for granulation

giSaw ftgen 1,0,4096,7,0,4096,1

gisq ftgen 2,0,4096,7,0,2046,0,0,1,2046,1
giTri  ftgen 3,0,4096,7,0,2046,1,2046,0

giPls ftgen 4,0,4096,7,1,200,1,0,0,4096-200,0
giBuzz ftgen 5,0,4096,11,20,1,1

;window function - used as an amplitude envelope for each grain
; (hanning window)
giwFn  ftgen 7,0,16384,20,2,1

instr 1
;random spline generates formant values in oct format
koct rspline 4,8,0.1,0.5
;oct format values converted to cps format
kCPS = cpsoct(koct)
;phase location is left at © (the beginning of the waveform)
kPhs = (0]
;frequency (formant) randomization and phase randomization are not used
kFmd =
kPmd = 0
;grain duration and density (rate of grain generation)
kGDur rspline 0.01,0.2,0.05,0.2
kDens rspline 10,200,0.05,0.5
;maximum number of grain overlaps allowed. This is used as a CPU brake
iMaxovr = 1000
;function table for source waveform for content of the grain
;a different waveform chosen once every 10 seconds
kFn randomh 1,5.99,0.1
;print info. to the terminal
printks "CPS:%5.2F%TDur :%5.2F%TDensity:%5.2F%Twaveform:%1.0F%n", 1,\
kCPS, kGDur, kDens, kFn
aSig grain3 kCPS, kPhs, kFmd, kPmd, kGDur, kDens, iMaxOvr, kFn, giWFn, \
0, 0
out asSig*0.06
endin

</CsInstruments>

<CsScore>
i1 0 300
e

</CsScore>

</CsoundSynthesizer>

The final example introduces grain3's two built-in randomizing functions for phase and pitch.
Phase refers to the location in the source waveform from which a grain will be read, pitch refers
to the pitch of the material within grains. In this example a long note is played, initially no
randomization is employed but gradually phase randomization is increased and then reduced
back to zero. The same process is applied to the pitch randomization amount parameter. This
time grain size is relatively large:0.8 seconds and density correspondingly low: 20 Hz.

EXAMPLE 04F05.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>

<CsInstruments>



;example by Iain McCurdy

sr = 44100
ksmps = 16
nchnls = 1
0dbfs = 1

;waveforms used for granulation
giBuzz ftgen 1,0,4096,11,40,1,0.9

;window function - used as an amplitude envelope for each grain
; (bartlett window)
giwFn ftgen 2,0,16384,20,3,1

instr 1
kCPS = 100
kPhs = 0
kFmd transeg 0,21,0,0, 10,4,15, 10,-4,0
kPmd transeqg 0,1,0,0, 10,4,1, 10,-4,0
kGDur = 0.8
kDens = 20
iMaxovr = 1000
kFn = 1

;print info. to the terminal
printks "Random Phase:%5.2F%TPitch Random:%5.2F%n",1, kPmd, kFmd
aSig grain3 kCPS, kPhs, kFmd, kPmd, kGDur, kDens, iMaxOvr, kFn, giWFn, 0, ©
out aSig*0.06
endin

</CsInstruments>

<CsScore>
il1051

e
</CsScore>

</CsoundSynthesizer>

CONCLUSION

This chapter has introduced some of the concepts behind the synthesis of new sounds based on
simple waveforms by using granular synthesis techniques. Only two of Csound's built-in opcodes
for granular synthesis, fof and grain3, have been used; it is beyond the scope of this work to
cover all of the many opcodes for granulation that Csound provides. This chapter has focused
mainly on synchronous granular synthesis; chapter 05G, which introduces granulation of recorded
sound files, makes greater use of asynchronous granular synthesis for time-stretching and pitch
shifting. This chapter will also introduce some of Csound's other opcodes for granular synthesis.



26 PHYSICAL MODELLING

With physical modelling we employ a completely different approach to synthesis than we do with
all other standard techniques. Unusually the focus is not primarily to produce a sound, but to
model a physical process and if this process exhibits certain features such as periodic oscillation
within a frequency range of 20 to 20000 Hz, it will produce sound.

Physical modelling synthesis techniques do not build sound using wave tables, oscillators and
audio signal generators, instead they attempt to establish a model, as a system in itself, which
which can then produce sound because of how the function it producers time varies with time. A
physical model usually derives from the real physical world, but could be any time-varying
system. Physical modelling is an exciting area for the production of new sounds.

Compared with the complexity of a real-world physically dynamic system a physical model will
most likely represent a brutal simplification. Nevertheless, using this technique will demand a lot
of formulae, because physical models are described in terms of mathematics. Although designing
a model may require some considerable work, once established the results commonly exhibit a
lively tone with time-varying partials and a "natural" difference between attack and release by
their very design - features that other synthesis techniques will demand more from the end user
in order to establish.

Csound already contains many ready-made physical models as opcodes but you can still build
your own from scratch. This chapter will look at how to implement two classical models from
first principles and then introduce a number of Csound's ready made physical modelling opcodes.

THE MASS-SPRING MODEL!

Many oscillating processes in nature can be modelled as connections of masses and springs.
Imagine one mass-spring unit which has been set into motion. This system can be described as a
sequence of states, where every new state results from the two preceding ones. Assumed the
first state a0 is O and the second state al is 0.5. Without the restricting force of the spring, the
mass would continue moving unimpeded following a constant velocity:

A Amp

—State
(Time)

0.5




As the velocity between the first two states can be described as al-a0, the value of the third
state a2 will be:

a2=al+(al-a0)=05+05=1

But, the spring pulls the mass back with a force which increases the further the mass moves
away from the point of equilibrium. Therefore the masses movement can be described as the
product of a constant factor ¢ and the last position al. This damps the continuous movement of
the mass so that for a factor of c=0.4 the next position will be:

a2 = (al+(al-a0))-c*al=1-0.2=0.8
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Csound can easily calculate the values by simply applying the formulae. For the first k-cycleZ,
they are set via the init opcode. After calculating the new state, al becomes a0 and a2 becomes
al for the next k-cycle. This is a csd which prints the new values five times per second. (The
states are named here as kO/kl/k2 instead of a0/al/a2, because k-rate values are needed here
for printing instead of audio samples.)

EXAMPLE 04G01.csd

<CsoundSynthesizer>

<CsOptions>

-n ;no sound

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 8820 ;5 steps per second

instr Printvals

;initial values

kstep init ©

ke init ©

k1 init 0.5

kc init 0.4

;calculation of the next value

k2 = k1 + (k1 - k@) - kc * k1
printks "Sample=%d: k0 = %.3f, ki1 = %.3f, k2 = %.3f\n", 0, kstep, k0, ki, k2
;actualize values for the next step
kstep = kstep+1

ko = ki

k1 = k2

endin



</CsInstruments>

<CsScore>

i "Printvals" 0 10
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

The output starts with:

State=0: kO = 0.000, k1 = 0.500, k2 = 0.800
State=1: kO = 0.500, k1 = 0.800, k2 = 0.780
State=2: kO = 0.800, ki1 = 0.780, k2 = 0.448
State=3: kO = 0.780, k1 = 0.448, k2 = -0.063
State=4: kO = 0.448, k1 = -0.063, k2 = -0.549
State=5: kO = -0.063, k1 = -0.549, k2 = -0.815
State=6: kO = -0.549, k1 = -0.815, k2 = -0.756
State=7: kO = -0.815, k1 = -0.756, k2 = -0.393
State=8: kO = -0.756, ki1 = -0.393, k2 = 0.126
State=9: kO = -0.393, k1 = 0.126, k2 = 0.595
State=10: kO = 0.126, k1 = 0.595, k2 = 0.826
State=11: k0@ = 0.595, k1 = 0.826, k2 = 0.727
State=12: k0 = 0.826, ki1 = 0.727, k2 = 0.337
Amp
14
@ a2 ® a3
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So, a sine wave has been created, without the use of any of Csound's oscillators...
Here is the audible proof:

EXAMPLE 04G02.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 1

nchnls = 2

0dbfs = 1

instr MassSpring
;initial values

a0 init [¢]

al init 0.05

ic = 0.01 ;spring constant

;calculation of the next value

a2 = al+(al-a@) - ic*al
outs a0, ao

;actualize values for the next step

ao = al

al = a2

endin

</CsInstruments>

<CsScore>

i "MassSpring" 0 10

</CsScore>

</CsoundSynthesizer>
;example by joachim heintz, after martin neukom

As the next sample is calculated in the next control cycle, ksmps has to be set to 12 The
resulting frequency depends on the spring constant: the higher the constant, the higher the
frequency. The resulting amplitude depends on both, the starting value and the spring constant.



This simple model shows the basic principle of a physical modelling synthesis: creating a system
which produces sound because it varies in time. Certainly it is not the goal of physical modelling
synthesis to reinvent the wheel of a sine wave. But modulating the parameters of a model may
lead to interesting results. The next example varies the spring constant, which is now no longer a
constant:

EXAMPLE 04G03.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 1

nchnls = 2

0dbfs = 1

instr MassSpring
;initial values

a0 init [¢]

al init 0.05

ke randomi .001, .05, 8, 3

;calculation of the next value

a2 = al+(al-a@) - kc*al
outs a0, ao

;actualize values for the next step

ao = al

al = a2

endin

</CsInstruments>

<CsScore>

i "MassSpring" 0 10

</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

Working with physical modelling demands thought in more physical or mathematical terms:
examples of this might be if you were to change the formula when a certain value of ¢ had been
reached, or combine more than one spring.

THE KARPLUS-STRONG ALGORITHM: PLUCKED STRING

The Karplus-Strong algorithm provides another simple yet interesting example of how physical
modelling can be used to synthesized sound. A buffer is filled with random values of either +1 or
-1. At the end of the buffer, the mean of the first and the second value to come out of the
buffer is calculated. This value is then put back at the beginning of the buffer, and all the values
in the buffer are shifted by one position.

This is what happens for a buffer of five values, for the first five steps:

initial state 1 -1 1 1 -1
step 1 0 1 -1 1 1
step 2 1 0 1 -1 1
step 3 0 1 0 1 -1
step 4 0 0 1 0 1
step 5 0.5 0 0 1 0

The next Csound example represents the content of the buffer in a function table, implements
and executes the algorithm, and prints the result after each five steps which here is referred to
as one cycle:

EXAMPLE 04G04.csd

<CsoundSynthesizer>
<CsOptions>

-n

</CsOptions>
<CsInstruments>



sr = 44100

ksmps = 32
nchnls = 1
0dbfs = 1

opcode KS, 0, ii

;performs the karplus-strong algorithm
iTab, iThSiz xin
;calculate the mean of the last two values

iult tab_i iTbSiz-1, iTab
iPenult tab_i iTbSiz-2, iTab
iNewval = (iUult + iPenult) / 2
;shift values one position to the right
indx = iTbSiz-2
loop:
ival tab_i indx, iTab

tabw_1i ival, indx+1, iTab

loop_ge indx, 1, 0, loop
;fill the new value at the beginning of the table
tabw_1i iNewval, 0, iTab
endop

opcode PrintTab, 0, iiS
;prints table content, with a starting string
iTab, iTbhSiz, Sout xin

indx = [¢]

loop:

ival tab_i indx, iTab

Snew sprintf "%8.3f", ival

Sout strcat Sout, Snew
loop_1t indx, 1, iTbhSiz, loop
puts Sout, 1

endop

instr ShowBuffer

;fill the function table

iTab ftgen 0, , -5, -2, 1, -1, 1, 1, -1

iTbLen tableng iTab

;loop cycles (five states)

iCycle =

cycle:

Scycle sprintf "Cycle %d:", iCycle
PrintTab iTab, iTbLen, Scycle

;loop states

iState = [c]

state:
KS iTab, iTbLen
loop_1t iState, 1, iTbLen, state
loop_1t iCycle, 1, 10, cycle

endin
</CsInstruments>
<CsScore>

i "ShowBuffer" 0 1
</CsScore>

</CsoundSynthesizer>

This is the output:

Cycle 0: 1.000 -1.000 1.000 1.000 -1.000
Cycle 1: 0.500 0.000 0.000 1.000 0.000
Cycle 2: 0.500 0.250 0.000 0.500 0.500
Cycle 3: 0.500 0.375 0.125 0.250 0.500
Cycle 4: 0.438 0.438 0.250 0.188 0.375
Cycle 5: 0.359 0.438 0.344 0.219 0.281
Cycle 6: 0.305 0.398 0.391 0.281 0.250
Cycle 7: 0.285 0.352 0.395 0.336 0.266
Cycle 8: 0.293 0.318 0.373 0.365 0.301
Cycle 9: 0.313 0.306 0.346 0.369 0.333

It can be seen clearly that the values get smoothed more and more from cycle to cycle. As the
buffer size is very small here, the values tend to come to a constant level; in this case 0.333.
But for larger buffer sizes, after some cycles the buffer content has the effect of a period which
is repeated with a slight loss of amplitude. This is how it sounds, if the buffer size is 1/100 second
(or 441 samples at sr=44100):

EXAMPLE 04G05.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>



sr = 44100

ksmps = 1

nchnls = 2

0dbfs = 1

instr 1

;delay time

ibelTm = 0.01

;fill the delay line with either -1 or 1 randomly
kDur timeinsts

if kDur < iDelTm then

aFill rand 1, 2, 1, 1 ;values 0-2

aFill = floor(aFill)*2 - 1 ;just -1 or +1

else

aFill = [0]

endif

;delay and feedback

ault init 0 ;last sample in the delay line
aulti init 0 ;delayed by one sample

aMean = (ault+ault1)/2 ;mean of these two
ault delay aFill+aMean, iDelTm

ault1i delay1l ault

outs ault, ault

endin
</CsInstruments>
<CsScore>

i10 60
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz, after martin neukom

This sound resembles a plucked string: at the beginning the sound is noisy but after a short
period of time it exhibits periodicity. As can be heard, unless a natural string, the steady state is
virtually endless, so for practical use it needs some fade-out. The frequency the listener
perceives is related to the length of the delay line. If the delay line is 1/100 of a second, the
perceived frequency is 100 Hz. Compared with a sine wave of similar frequency, the inherent
periodicity can be seen, and also the rich overtone structure:
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Csound also contains over forty opcodes which provide a wide variety of ready-made physical
models and emulations. A small number of them will be introduced here to give a brief overview
of the sort of things available.

WGBOW - A WAVEGUIDE EMULATION OF A BOWED
STRING BY PERRY COOK

Perry Cook is a prolific author of physical models and a lot of his work has been converted into
Csound opcodes. A number of these models wgbow, wgflute, wgclar wgbowedbar and wgbrass
are based on waveguides. A waveguide, in its broadest sense, is some sort of mechanism that
limits the extend of oscillations, such as a vibrating string fixed at both ends or a pipe. In these
sorts of physical model a delay is used to emulate these limits. One of these, wgbow,
implements an emulation of a bowed string. Perhaps the most interesting aspect of many
physical models in not specifically whether they emulate the target instrument played in a
conventional way accurately but the facilities they provide for extending the physical limits of
the instrument and how it is played - there are already vast sample libraries and software
samplers for emulating conventional instruments played conventionally. wgbow offers several
interesting options for experimentation including the ability to modulate the bow pressure and
the bowing position at k-rate. Varying bow pressure will change the tone of the sound produced



by changing the harmonic emphasis. As bow pressure reduces, the fundamental of the tone
becomes weaker and overtones become more prominent. If the bow pressure is reduced further
the abilty of the system to produce a resonance at all collapse. This boundary between tone
production and the inability to produce a tone can provide some interesting new sound effect.
The following example explores this sound area by modulating the bow pressure parameter
around this threshold. Some additional features to enhance the example are that 7 different
notes are played simultaneously, the bow pressure modulations in the right channel are delayed
by a varying amount with respect top the left channel in order to create a stereo effect and a
reverb has been added.

EXAMPLE 04G06.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1
seed 0

gisine ftgen 0,0,4096,10,1
gaSendL, gaSendR init ©

instr 1 ; wgbow instrument

kamp = 0.3

kfreq = p4

ipres1 = p5

ipres2 = p6

; kpres (bow pressure) defined using a random spline
kpres rspline p5,p6,0.5,2

krat = 0.127236

kvibf = 4.5

kvibamp = 0

iminfreq = 20

; call the wgbow opcode

asSigL wgbow kamp, kfreq, kpres, krat, kvibf, kvibamp, gisine, iminfreq
; modulating delay time

kdel rspline ©0.01,0.1,0.1,0.5

; bow pressure parameter delayed by a varying time in the right channel
kpres vdel_k kpres, kdel, 0.2,2
aSigR wgbow kamp, kfreq, kpres, krat, kvibf, kvibamp, gisine, iminfreq

outs aSiglL,aSigR
; send some audio to the reverb
gaSendL = gaSendL + aSigL/3
gaSendR = gaSendR + aSigR/3

endin

instr 2 ; reverb
aRvbL, aRvbR reverbsc gaSendL,gaSendR,0.9,7000

outs aRvbL, aRvbR
clear gaSendL, gaSendR
endin
</CsInstruments>
<CsScore>
instr. 1

p4 = pitch (hz.)
p5 = minimum bow pressure

;

’

7

; p6 = maximum bow pressure
; 7 notes played by the wgbow instrument
i1 0480 70 0.03 0.1

i1 0480 85 0.03 0.1

i1 © 480 100 0.03 0.09

i1 © 480 135 0.03 0.09

i1 0 480 170 0.02 0.09

i1 0 480 202 0.04 0.1

i1 0 480 233 0.05 0.11

; reverb instrument

i2 0 480

</CsScore>

</CsoundSynthesizer>

This time a stack of eight sustaining notes, each separated by an octave, vary their 'bowing



position' randomly and independently. You will hear how different bowing positions accentuates
and attenuates different partials of the bowing tone. To enhance the sound produced some
filtering with tone and pareq is employed and some reverb is added.

EXAMPLE 04G07.csd

<CsoundSynthesizer>

<CsOptions>

-odac

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1
seed 0

gisine ftgen 0,0,4096,10,1
gaSend init ©

instr 1 ; wgbow instrument

kamp = 0.1

kfreq = p4

kpres = 0.2

krat rspline 0.006,0.988,0.1,0.4

kvibf = 4.5

kvibamp = 0

iminfreq = 20

aSig wgbow kamp, kfreq, kpres, krat, kvibf, kvibamp, gisine, iminfreq

aSig butlp aSig, 2000

asSig pareq asig,80,6,0.707
outs asig,aSig

gaSend = gaSend + aSig/3

endin

instr 2 ; reverb
aRvbL, aRvbR reverbsc gaSend,gaSend,0.9,7000

outs aRvbL, aRvbR
clear gaSend
endin
</CsInstruments>
<CsScore>

instr. 1 (wgbow instrument)
p4 = pitch (hertz)
wgbow instrument

7

H

’

il © 480 20

i1 © 480 40

il 0O 480 80

i1 © 480 160

il © 480 320

i1l © 480 640

il © 480 1280
i1 © 480 2460

; reverb instrument
i 2 0 480
</CsScore>
</CsoundSynthesizer>

All of the wg- family of opcodes are worth exploring and often the approach taken here -
exploring each input parameter in isolation whilst the others retain constant values - sets the
path to understanding the model better. Tone production with wgbrass is very much dependent
upon the relationship between intended pitch and lip tension, random experimentation with this
opcode is as likely to result in silence as it is in sound and in this way is perhaps a reflection of
the experience of learning a brass instrument when the student spends most time push air
silently through the instrument. With patience it is capable of some interesting sounds however.
In its case, | would recommend building a realtime GUI and exploring the interaction of its input
arguments that way. wgbowedbar, like a number of physical modelling algorithms, is rather
unstable. This is not necessary a design flaw in the algorithm but instead perhaps an indication
that the algorithm has been left quite open for out experimentation - or abuse. In these situation
caution is advised in order to protect ears and loudspeakers. Positive feedback within the model
can result in signals of enormous amplitude very quickly. Employment of the clip opcode as a
means of some protection is recommended when experimenting in realtime.



BARMODEL - A MODEL OF A STRUCK METAL BAR BY
STEFAN BILBAO

barmodel can also imitate wooden bars, tubular bells, chimes and other resonant inharmonic
objects. barmodel is a model that can easily be abused to produce ear shreddingly loud sounds
therefore precautions are advised when experimenting with it in realtime. We are presented with
a wealth of input arguments such as 'stiffness’, 'strike position' and 'strike velocity', which relate
in an easily understandable way to the physical process we are emulating. Some parameters will
evidently have more of a dramatic effect on the sound produced than other and again it is
recommended to create a realtime GUI for exploration. Nonetheless, a fixed example is provided
below that should offer some insight into the kinds of sounds possible.

Probably the most important parameter for us is the stiffness of the bar. This actually provides
us with our pitch control and is not in cycle-per-second so some experimentation will be required
to find a desired pitch. There is a relationship between stiffness and the parameter used to
define the width of the strike - when the stiffness coefficient is higher a wider strike may be
required in order for the note to sound. Strike width also impacts upon the tone produced,
narrower strikes generating emphasis upon upper partials (provided a tone is still produced)
whilst wider strikes tend to emphasize the fundamental).

The parameter for strike position also has some impact upon the spectral balance. This effect
may be more subtle and may be dependent upon some other parameter settings, for example,
when strike width is particularly wide, its effect may be imperceptible. A general rule of thumb
here is that is that in order to achieve the greatest effect from strike position, strike width
should be as low as will still produce a tone. This kind of interdependency between input
parameters is the essence of working with a physical model that can be both intriguing and
frustrating.

An important parameter that will vary the impression of the bar from metal to wood is

An interesting feature incorporated into the model in the ability to modulate the point along the
bar at which vibrations are read. This could also be described as pick-up position. Moving this
scanning location results in tonal and amplitude variations. We just have control over the
frequency at which the scanning location is modulated.

EXAMPLE 04G07.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs =1
instr 1
; boundary conditions 1=fixed 2=pivot 3=free
kbecL = 1
kbcR = 1
; stiffness
iK = p4
; high freq. loss (damping)
ib = p5
; scanning frequency
kscan rspline p6,p7,0.2,0.8
; time to reach 30db decay
iT30 = p3
; strike position
ipos random 0,1
; strike velocity
ivel = 1000
; width of strike
iwid = 0.1156
asig barmodel kbcL, kbcR, iK, ib, kscan, iT30, ipos, ivel, iwid
kPan rspline 0.1,0.9,0.5,2
aL, aR pan2 aSig, kPan
outs aL,aR
endin

</CsInstruments>



<CsScore>
;£ 0901 30 2605 90 7 30
; p4 = stiffness (pitch)

#define gliss(dur'Kstrt'Kend'b'scanl'scan2)

#

i1o0 20 $Kstrt $b $scanl $scan2

i 1 A+0.05 $dur > $b $scanl $scan2
i1 A+0.05 $dur > $b $scanl $scan2
i1 A+0.05 $dur > $b $scanl $scan2
i1 A+0.05 $dur > $b $scanl $scan2
i 1 A+0.05 $dur > $b $scanl $scan2
i1 A+0.05 $dur > $b $scanl $scan2
i1 A+0.05 $dur > $b $scanl $scan2
i1 A+0.05 $dur > $b $scanl $scan2
i 1 A+0.05 $dur > $b $scanl $scan2
i 1 A+0.05 $dur > $b $scanl $scan2
i1 A+0.05 $dur > $b $scanl $scan2
i 1 A+0.05 $dur > $b $scanl $scan2
i 1 A+0.05 $dur > $b $scanl $scan2
i 1 A+0.05 $dur > $b $scanl $scan2
i1 A+0.05 $dur > $b $scanl $scan2
i1 A+0.05 $dur > $b $scanl $scan2
i 1 A+0.05 $dur $Kend $b $scanl $scan2
#

$91iss(15'40'400'0.0755'0.1'2)

b5

$91iss(2'80'800'0.755'0'0.1)

b 10

$91iss(3'10'160'0.1'0'0)

b 15

$gliss(40'40'433'0'0.2'5)
e

</CsScore>
</CsoundSynthesizer>
; example written by Iain McCurdy

PHISEM - PHYSICALLY INSPIRED STOCHASTIC EVENT
MODELING

The PhiSEM set of models in Csound, again based on the work of Perry Cook, imitate
instruments that rely on collisions between smaller sound producing object to produce their
sounds. These models include a tambourine, a set of bamboo windchimes and sleighbells. These
models algorithmically mimic these multiple collisions internally so that we only need to define
elements such as the number of internal elements (timbrels, beans, bells etc.) internal damping
and resonances. Once again the most interesting aspect of working with a model is to stretch
the physical limits so that we can hear the results from, for example, a maraca with an
impossible number of beans, a tambourine with so little internal damping that it never decays. In
the following example | explore tambourine, bamboo and sleighbells each in turn, first in a state
that mimics the source instrument and then with some more extreme conditions.

EXAMPLE 04G08.csd
<CsoundSynthesizer>
<CsOptions>

-odac
</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 1

0dbfs =1

instr 1 ; tambourine

iAmp = p4
iDettack = 0.01
iNum = p5
iDamp = p6
iMaxShake = [c]
iFreq = p7
iFreql = p8
iFreq2 = p9
asSig tambourine iAmp, iDettack, iNum, iDamp, iMaxShake, iFreq, iFreql, iFreq2

out aSig

endin



instr 2 ; bamboo

iAmp = p4
iDettack = 0.01
iNum = p5
iDamp = p6
iMaxShake = [c]
iFreq = p7
iFreql = p8
iFreq2 = po
aSig bamboo iAmp, iDettack, iNum, iDamp, iMaxShake, iFreq, iFreql, iFreq2

out aSig
endin

instr 3 ; sleighbells

iAmp = p4

iDettack = 0.01

iNum = p5

iDamp = p6

iMaxShake = [c]

iFreq = p7

iFreql = p8

iFreq2 = p9

asig sleighbells iAmp, iDettack, iNum, iDamp, iMaxShake, iFreq, iFreql,iFreq2

out aSig

endin
</CsInstruments>
<CsScore>

; p4 = amp.

; p5 = number of timbrels

; p6 = damping

; p7 = freq (main)

; p8 = freq 1

; p9 = freq 2

; tambourine

i106010.1 32 0.47 2300 5600 8100
i1+ 10.1 32 0.47 2300 5600 8100
i1+20.1 320.75 2300 5600 8100
i1+ 20.05 2 0.75 2300 5600 8100
i1+10.1 16 0.65 2000 4000 8000
i1+10.1 16 0.65 1000 2000 3000
i1820.010 10.75 1257 2653 6245
i1820.010 10.75 673 3256 9102
i1820.010 10.75 314 1629 4756
b 10

; bamboo
1i2010.41.25 0.0 2800 2240 3360
i2+10.41.250.0 2800 2240 3360
i2+20.41.25 0.05 2800 2240 3360
i2+20.2 10 0.05 2800 2240 3360
i2+10.3 16 0.01 2000 4000 8000
i2+10.3 16 0.01 1000 2000 3000
i2820.1 1 0.05 1257 2653 6245
i2820.1 1 0.05 1073 3256 8102
i2820.1 1 0.05 514 6629 9756
b 20

; sleighbells
1306010.7 1.25 0.17 2500 5300 6500
i3+ 10.7 1.25 0.17 2500 5300 6500
i3+ 20.7 1.25 0.3 2500 5300 6500
i3+20.4 10 0.3 2500 5300 6500
i3+10.5 16 0.2 2000 4000 8000
i3+10.5 16 0.2 16000 2000 3000
i3820.3 1 0.3 1257 2653 6245
i3820.3 1 0.3 1073 3256 8102
i3820.3 10.3 514 6629 9756
e
</CsScore>

</CsoundSynthesizer>
; example written by Iain McCurdy

Physical modelling can produce rich, spectrally dynamic sounds with user manipulation usually
abstracted to a small number of descriptive parameters. Csound offers a wealth of other
opcodes for physical modelling which cannot all be introduced here so the user is encouraged to
explore based on the approaches exemplified here. You can find lists in the chapters Models and

Emulations, Scanned Synthesis and Waveguide Physical Modeling of the Csound Manual.



. The explanation here follows chapter 8.1.1 of Martin Neukom's Signale Systeme
Klangsynthese (Bern 2003~

. See chapter 03A INITIALIZATION AND PERFORMANCE PASS for more information about
Csound's performance Ioops.:

. If defining this as a UDO, a local ksmps=1 could be set without affecting the general ksmps.
See chapter 03F USER DEFINED OPCODES and the Csound Manual for setksmps for more
information.~

. See chapter 03G MACROS about the use of macros in the score.~
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27 ENVELOPES

Envelopes are used to define how a value changes over time. In early synthesizers, envelopes
were used to define the changes in amplitude in a sound across its duration thereby imbuing
sounds characteristics such as 'percussive’, or 'sustaining'. Of course envelopes can be applied to
any parameter and not just amplitude.

Csound offers a wide array of opcodes for generating envelopes including ones which emulate the
classic ADSR (attack-decay-sustain-release) envelopes found on hardware and commercial
software synthesizers. A selection of these opcodes, which represent the basic types, shall be
introduced here

The simplest opcode for defining an envelope is line. /ine describes a single envelope segment as
a straight line between a start value and an end value which has a given duration.

ares line ia, idur, ib
kres line ia, idur, ib

In the following example line is used to create a simple envelope which is then used as the
amplitude control of a poscil oscillator. This envelope starts with a value of 0.5 then over the
course of 2 seconds descends in linear fashion to zero.

EXAMPLE 05A01.csd

<CsoundSynthesizer>

<CsOptions>

-odac ; activates real time sound output

</CsOptions>

<CsInstruments>

; Example by Iain McCurdy

sr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

giSine ftgen 0, 0, 2712, 10, 1 ; a sine wave
instr 1

aEnv line 0.5, 2, © ; amplitude envelope

asSig poscil aEnv, 500, giSine ; audio oscillator

out asig ; audio sent to output

endin

</CsInstruments>

<CsScore>

i 10 2 ; instrument 1 plays a note for 2 seconds

e

</CsScore>

</CsoundSynthesizer>

The envelope in the above example assumes that all notes played by this instrument will be 2
seconds long. In practice it is often beneficial to relate the duration of the envelope to the
duration of the note (p3) in some way. In the next example the duration of the envelope is
replaced with the value of p3 retrieved from the score, whatever that may be. The envelope will
be stretched or contracted accordingly.

EXAMPLE 05A02.csd
<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>

;Example by Iain McCurdy
sr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

giSine ftgen 0, 0, 2nM12, 10, 1 ; a sine wave



instr 1
; A single segment envelope. Time value defined by note duration.
aEnv line 0.5, p3, O

aSig poscil aEnv, 500, giSine ; an audio oscillator

out asig ; audio sent to output
endin

</CsInstruments>

<CsScore>

; pl p2 p3

i1 o 1

i1 2 0.2

i1 3 4

e

</CsScore>

</CsoundSynthesizer>

It may not be disastrous if a envelope's duration does not match p3 and indeed there are many
occasions when we want an envelope duration to be independent of p3 but we need to remain
aware that if p3 is shorter than an envelope's duration then that envelope will be truncated
before it is allowed to complete and if p3 is longer than an envelope's duration then the envelope
will complete before the note ends (the consequences of this latter situation will be looked at in
more detail later on in this section).

line (and most of Csound's envelope generators) can output either k or a-rate variables. k-rate
envelopes are computationally cheaper than a-rate envelopes but in envelopes with fast moving
segments quantization can occur if they output a k-rate variable, particularly when the control
rate is low, which in the case of amplitude envelopes can lead to clicking artefacts or distortion.

linseg is an elaboration of /ine and allows us to add an arbitrary number of segments by adding
further pairs of time durations followed envelope values. Provided we always end with a value
and not a duration we can make this envelope as long as we like.

In the next example a more complex amplitude envelope is employed by using the linseg opcode.
This envelope is also note duration (p3) dependent but in a more elaborate way. A attack-decay
stage is defined using explicitly declared time durations. A release stage is also defined with an
explicitly declared duration. The sustain stage is the p3 dependent stage but to ensure that the
duration of the entire envelope still adds up to p3, the explicitly defined durations of the attack,
decay and release stages are subtracted from the p3 dependent sustain stage duration. For this
envelope to function correctly it is important that p3 is not less than the sum of all explicitly
defined envelope segment durations. If necessary, additional code could be employed to
circumvent this from happening

EXAMPLE 05A03.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0, 0, 2~r12, 10, 1 ; a sine wave

instr 1
; a more complex amplitude envelope:
; | -attack-|-decay--|---sustain---|-release- |
aEnv linseg 0, 0.01, 1, 0.1, 0.1, p3-0.21, 0.1, 0.1, ©
aSig poscil aEnv, 500, giSine

out asSig

endin
</CsInstruments>
<CsScore>
i10e1
i125

e
</CsScore>



</CsoundSynthesizer>

The next example illustrates an approach that can be taken whenever it is required that more
than one envelope segment duration be p3 dependent. This time each segment is a fraction of
p3. The sum of all segments still adds up to p3 so the envelope will complete across the duration
of each each note regardless of duration.

EXAMPLE 05A04.csd
<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0, 0, 2n12, 10, 1; a sine wave

instr 1
aEnv linseg 0, p3*0.5, 1, p3*0.5, 0 ; rising then falling envelope
aSig poscil aEnv, 500, giSine
out asSig
endin

</CsInstruments>

<CsScore>
; 3 notes of different durations are played
i10 1
i120.1
i13 5
e
</CsScore>

</CsoundSynthesizer>

The next example highlights an important difference in the behaviours of line and linseg when p3
exceeds the duration of an envelope.

When a note continues beyond the end of the final value of a linseg defined envelope the final
value of that envelope is held. A line defined envelope behaves differently in that instead of
holding its final value it continues in a trajectory defined by the last segment.

This difference is illustrated in the following example. The linseg and line envelopes of
instruments 1 and 2 appear to be the same but the difference in their behaviour as described
above when they continue beyond the end of their final segment is clear when listening to the
example.

Note that information given in the Csound Manual in regard to this matter is incorrect at the
time of writing.

EXAMPLE 05A05.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sSr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

giSine ftgen 0, 0, 2712, 10, 1 ; a sine wave

instr 1 ; linseg envelope
aCps linseg 300, 1, 600 ; linseg holds its last value
asSig poscil 0.2, aCps, giSine
out aSig



endin

instr 2 ; line envelope

aCps line 300, 1, 600 ; line continues its trajectory
aSig poscil 0.2, aCps, giSine
out aSig
endin
</CsInstruments>
<CsScore>

i1 0 5 ; linseg envelope
i 26 5 ; line envelope

e

</CsScore>

</CsoundSynthesizer>

expon and expseg are versions of line and linseg that instead produce envelope segments with
concave exponential rather than linear shapes. expon and expseg can often be more musically
useful for envelopes that define amplitude or frequency as they will reflect the logarithmic
nature of how these parameters are perceived. On account of the mathematics that is used to
define these curves, we cannot define a value of zero at any node in the envelope and an
envelope cannot cross the zero axis. If we require a value of zero we can instead provide a
value very close to zero. If we still really need zero we can always subtract the offset value
from the entire envelope in a subsequent line of code.

The following example illustrates the difference between line and expon when applied as
amplitude envelopes.

EXAMPLE 05A06.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
giSine ftgen 0, 0, 2A12, 10, 1 ; a sine wave

instr 1 ; line envelope

akEnv line 1, p3, ©
asSig poscil aEnv, 500, giSine
out asSig
endin

instr 2 ; expon envelope

aEnv expon 1, p3, 0.0001
asig poscil aEnv, 500, giSine
out asig
endin
</CsInstruments>
<CsScore>

i10 2 ; line envelope
i 221 ; expon envelope
e

</CsScore>

</CsoundSynthesizer>

The nearer our 'near-zero' values are to zero the quicker the curve will appear to reach 'zero'. In
the next example smaller and smaller envelope end values are passed to the expon opcode using
p4 values in the score. The percussive 'ping' sounds are perceived to be increasingly short.

EXAMPLE 05A07.csd
<CsoundSynthesizer>

<CsOptions>



-odac ; activates real time sound output
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
giSine ftgen 0, 0, 2A12, 10, 1 ; a sine wave
instr 1; expon envelope
iEndval = p4 ; variable 'iEndval' retrieved from score
aEnv expon 1, p3, iEndval
asig poscil aEnv, 500, giSine
out aSig
endin
</CsInstruments>
<CsScore>
7Pl p2 p3 p4
i1 0 1 0.001
i1 1 1 0.000001
i1 2 1 0.000000000000001
e
</CsScore>
</CsoundSynthesizer>

Note that expseg does not behave like linseg in that it will not hold its last final value if p3
exceeds its entire duration, instead it continues its curving trajectory in a manner similar to line
(and expon). This could have dangerous results if used as an amplitude envelope.

When dealing with notes with an indefinite duration at the time of initiation (such as midi
activated notes or score activated notes with a negative p3 value), we do not have the option of
using p3 in a meaningful way. Instead we can use one of Csound's envelopes that sense the
ending of a note when it arrives and adjust their behaviour according to this. The opcodes in
question are linenr, linsegr, expsegr, madsr, mxadsr and envlpxr. These opcodes wait until a held
note is turned off before executing their final envelope segment. To facilitate this mechanism
they extend the duration of the note so that this final envelope segment can complete.

The following example uses midi input (either hardware or virtual) to activate notes. The use of
the linsegr envelope means that after the short attack stage lasting 0.1 seconds, the
penultimate value of 1 will be held as long as the note is sustained but as soon as the note is
released the note will be extended by 0.5 seconds in order to allow the final envelope segment
to decay to zero

EXAMPLE 05A08.csd
<CsoundSynthesizer>

<CsOptions>

-odac -+rtmidi=virtual -MO

; activate real time audio and MIDI (virtual midi device)
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
giSine ftgen 0, 0, 2r12, 10, 1 ; a sine wave
instr 1
icps cpsmidi
; attack- |sustain-|-release
aEnv linsegr 0, 0.01, 0.1, 0.5,0 ; envelope that senses note releases
aSig poscil aEnv, icps, giSine ; audio oscillator
out asig ; audio sent to output
endin
</CsInstruments>

<CsScore>



f © 240 ; csound performance for 4 minutes
e
</CsScore>

</CsoundSynthesizer>

Sometimes designing our envelope shape in a function table can provide us with shapes that are
not possible using Csound's envelope generating opcodes. In this case the envelope can be read
from the function table using an oscillator and if the oscillator is given a frequency of 1/p3 then it
will read though the envelope just once across the duration of the note

The following example generates an amplitude envelope which is the shape of the first half of a
sine wave.

EXAMPLE 05A09.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activate real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

Sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
giSine ftgen 0, 0, 2r12, 10, 1 ; a sine wave

giEnv ftgen 0, 0, 2712, 9, 0.5, 1, 0 ; envelope shape: a half sine

instr 1

; read the envelope once during the note's duration:

aEnv poscil 1, 1/p3, giEnv

asig poscil aEnv, 500, giSine ; audio oscillator

out aSig ; audio sent to output

endin

</CsInstruments>

<CsScore>

; 7 notes, increasingly short

i102

i121

i130.5

i140.25

i15 0.125

i16 0.0625

i17 0.03125

forv7.1

e

</CsScore>

</CsoundSynthesizer>

LPSHOLD, LOOPSEG AND LOOPTSEG - A CSOUND TB303

The next example introduces three of Csound's looping opcodes, |pshold, loopseg and looptseg.

These opcodes generate envelopes which are looped at a rate corresponding to a defined
frequency. What they each do could also be accomplished using the 'envelope from table'
technique outlined in an earlier example but these opcodes provides the added convenience of
encapsulating all the required code in one line without the need of any function tables.
Furthermore all of the input arguments for these opcodes can be modulated at k-rate.

Ipshold generates an envelope with in which each break point is held constant until a new break
point is encountered. The resulting envelope will contain horizontal line segments. In our example
this opcode will be used to generate a looping bassline in the fashion of a Roland TB303. Because
the duration of the entire envelope is wholly dependent upon the frequency with which the
envelope repeats - in fact it is the reciprocal - values for the durations of individual envelope
segments are defining times in seconds but represent proportions of the entire envelope
duration. The values given for all these segments do not need to add up to any specific value as
Csound rescales the proportionality according to the sum of all segment durations. You might
find it convenient to contrive to have them all add up to 1, or to 100 - either is equally valid. The



other looping envelope opcodes discussed here use the same method for defining segment
durations

loopseg allows us to define a looping envelope with linear segements. In this example it is used to
define the amplitude envelope of each individual note. Take note that whereas the Ipshold
envelope used to define the pitches of the melody repeats once per phrase the amplitude
envelope repeats once for each note of the melody therefore its frequency is 16 times that of
the melody envelope (there are 16 notes in our melodic phrase).

looptseg is an elaboration of loopseg in that is allows us to define the shape of each segment
individually whether that be convex, linear of concave. This aspect is defined using the 'type’
parameters. A 'type' value of 0 denotes a linear segement, a positive value denotes a convex
segment with higher positive values resulting in increasingly convex curves. Negative values
denote concave segments with increasing negative values resulting in increasingly concave
curves. In this example looptseg is used to define a filter envelope which, like the amplitude
envelope, repeats for every note. The addition of the 'type' parameter allows us to modulate
the sharpness of the decay of the filter envelope. This is a crucial element of the TB303 design.
Note that looptseg is only available in Csound 5.12 or later.

Other crucial features of this instrument such as 'note on/off' and 'hold' for each step are also
implemented using /pshold.

A number of the input parameters of this example are modulated automatically using the
randomi opcodes in order to keep it interesting. It is suggested that these modulations could be
replaced by linkages to other controls such as QuteCsound widgets, FLTK widgets or MIDI
controllers. Suggested ranges for each of these values are given in the .csd.

EXAMPLE 05A10.csd

<CsoundSynthesizer>

<CsOptions>

-odac ;activates real time sound output
</CsOptions>

<CsInstruments>

; Example by Iain McCurdy

Sr = 44100
ksmps = 4
nchnls = 1
0dbfs = 1

seed 0; seed random number generators from system clock

instr 1; Bassline instrument

kTempo = 90 ; tempo in beats per minute

kCfBase randomi 1,4, 0.2 ; base filter frequency (oct format)
kCfEnv randomi 0,4,0.2 ; filter envelope depth

kRes randomi 0.5,0.9,0.2 ; filter resonance

kvol = 0.5 ; volume control

kDecay randomi -10,10,0.2 ; decay shape of the filter.

kwaveform = [c] ; oscillator waveform. O=sawtooth 2=square
kDist randomi 0,1,0.1 ; amount of distortion

kPhFreq = kTempo/240 ; freq. to repeat the entire phrase
kBtFreq = (kTempo)/15 ; frequency of each 1/16th note

; -- Envelopes with held segments --

; The first value of each pair defines the relative duration of that segment,
; the second, the value itself.

; Note numbers (kNum) are defined as MIDI note numbers.

; Note On/0ff (kOn) and hold (kHold) are defined as on/off switches, 1 or zero
; note:1 2 3 4 5 6 7 8
i
k

9 10 11 12 13 14 15 16 0
Num 1lpshold kPhFreq, ©, 0,40, 1,42, 1,50, 1,49, 1,60, 1,54, 1,39, 1,40, \
1,46, 1,36, 1,40, 1,46, 1,50, 1,56, 1,44, 1,47,1,45
kon  1lpshold kPhFreq, 0, 0,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,0, 1,1, \
1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,0, 1,1, 1,1
kHold lpshold kPhFreq, 0, 0,0, 1,1, 1,1, 1,0, 1,0, 1,06, 1,0, 1,1, \
1,0, 1,0, 1,1, 1,1, 1,1, 1,1, 1,0, 1,0, 1,0
kHold vdel_k kHold, 1/kBtFreq, 1 ; offset hold by 1/2 note duration
kNum portk kNum, (0.01*kHold) ; apply portamento to pitch changes
; if note is not held: no portamento
kCps = cpsmidinn(kNum) ; convert note number to cps
koct = octcps(kCps) ; convert cps to oct format
; amplitude envelope attack sustain decay gap
kAmpEnv loopseg kBtFreq, 0, 0, 0,0.1, 1, 55/kTempo, 1, 0.1,0, 5/kTempo,0
KAmpEnv = (kHold=0?kAmpEnv:1) ; if a held note, ignore envelope
kAmpEnv port kAmpEnv, 0.001

; filter envelope



kcfoct looptseg kBtFreq, 0,0, kCfBase+kCfEnv+kOct, kDecay, 1, kCfBase+kOct
; if hold is off, use filter envelope, otherwise use steady state value:

kcfoct = (kHold=07kCfOct:kCfBase+kOct)

kCfoct limit kCcfoct, 4, 14 ; limit the cutoff frequency (oct format)
aSig vco2 0.4, kCps, i(kwaveform)*2, 0.5 ; VCO-style oscillator
aFilt 1pfi18 asSig, cpsoct(kCfoct), kRes, (kDistn2)*10 ; filter audio
asSig balance aFilt,aSig ; balance levels

kon port kOn, 0.006 ; smooth on/off switching

; audio sent to output, apply amp. envelope,
volume control and note On/O0ff status

out asSig * kAmpEnv * kVol * kOn
endin
</CsInstruments>
<CsScore>
i1 0 3600 ; instr 1 plays for 1 hour
e
</CsScore>

</CsoundSynthesizer>



28 PANNING AND SPATIALIZATION

SIMPLE STEREO PANNING

Csound provides a large number of opcodes designed to assist in the distribution of sound
amongst two or more speakers. These range from opcodes that merely balance a sound
between two channel to ones that include algorithms to simulate the doppler shift that occurs
when sound moves, algorithms that simulate the filtering and inter-aural delay that occurs as
sound reaches both our ears and algorithms that simulate distance in an acoustic space.

First we will look at some 'first principles' methods of panning a sound between two speakers.

The simplest method that is typically encountered is to multiply one channel of audio (aSig) by a
panning variable (kPan) and to multiply the other side by 1 minus the same variable like this:

asSigL
aSigR

aSig * kPan
asig * (1 - kPan)
outs aSigL, aSigR

where kPan is within the range zero to 1. If kPan is 1 all the signal will be in the left channel, if it
is zero all the signal will be in the right channel and if it is 0.5 there will be signal of equal
amplitide in both the left and the right channels. This way the signal can be continuously panned
between the left and right channels.

The problem with this method is that the overall power drops as the sound is panned to the
middle.

One possible solution to this problem is to take the square root of the panning variable for each
channel before multiplying it to the audio signal like this:
asigL = asig * sqrt(kPan)

aSigR asig * sqrt((1 - kPan))
outs aSigL, aSigR

By doing this, the straight line function of the input panning variable becomes a convex curve so
that less power is lost as the sound is panned centrally.

Using 902 sections of a sine wave for the mapping produces a more convex curve and a less
immediate drop in power as the sound is panned away from the extremities. This can be
implemented using the code shown below.

asigL
aSigR

aSig * sin(kPan*$M_PI_2)
aSig * cos(kPan*$M_PI_2)
outs aSigL, aSigR

(Note that '$M_PI_2" is one of Csound's built in macros and is equivalent to pi/2.)

A fourth method, devised by Michael Gogins, places the point of maximum power for each
channel slightly before the panning variable reaches its extremity. The result of this is that when
the sound is panned dynamically it appears to move beyond the point of the speaker it is
addressing. This method is an elaboration of the previous one and makes use of a different 90
degree section of a sine wave. It is implemented using the following code:

aSigL = aSig * sin((kPan + 0.5) * $M_PI_2)

aSigR = aSig * cos((kPan + 0.5) * $M_PI_2)
outs aSigL, aSigR

The following example demonstrates all three methods one after the other for comparison.
Panning movement is controlled by a slow moving LFO. The input sound is filtered pink noise.

EXAMPLE 05B01.csd
<CsoundSynthesizer>
<CsOptions>

-odac ; activates real time sound output
</CsOptions>



<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 10
nchnls = 2
0dbfs = 1
instr 1
imethod = p4; read panning method variable from score (p4)
HEE generate a source sound --------------ooo-n
al pinkish 0.3; pink noise
al reson al, 500, 30, 1; bandpass filtered
aPan 1fo 0.5, 1, 1; panning controlled by an 1fo
aPan = aPan + 0.5; offset shifted +0.5

B Tt method 1 --------mmommmm e
aPanL = aPan

aPanR = 1 - aPan

endif

R LR LR TR LT T method 2 --------------coo
aPanL = sqrt(aPan)
aPanR = sqrt(1 - aPan)

HE method 3 ------------iiiiaaaaa -

aPanL = sin(aPan*$M_PI_2)
aPanR = cos(aPan*$M_PI_2)
endif

HE method 4 -------mmmmmii o

aPanL = sin ((aPan + 0.5) * $M_PI_2)
aPanR = cos ((aPan + 0.5) * $M_PI_2)
endif
outs al*aPanL, al*aPanR ; audio sent to outputs
endin
</CsInstruments>
<CsScore>
; 4 notes one after the other to demonstrate 4 different methods of panning
;pl p2 p3 p4(method)
il1e0 4.5 1
i15 4.5 2
ii11e 4.5 3
i115 4.5 4
e
</CsScore>
</CsoundSynthesizer>

An opcode called pan2 exist which makes panning slightly easier for us to implement simple
panning employing various methods. The following example demonstrates the three methods
that this opcode offers one after the other. The first is the 'equal power' method, the second
'square root' and the third is simple linear. The Csound Manual alludes to fourth method but this
does not seem to function currently.

EXAMPLE 05B02.csd
<CsoundSynthesizer>

<CsOptions>
-odac ; activates real time sound output
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 10
nchnls = 2



0dbfs = 1

instr 1
imethod = p4 ; read panning method variable from score (p4)
R e generate a source sound ----------------~-~-~-~-~-~-~--
asSig pinkish 0.5 ; pink noise
asig reson asSig, 500, 30, 1 ; bandpass filtered
e
HE pan the signal ---------------~~-~-~----------
aPan 1fo 0.5, 1, 1 ; panning controlled by an 1lfo
aPan = aPan + 0.5 ; DC shifted + 0.5
aSigL, aSigR pan2 aSig, aPan, imethod; create stereo panned output
g

outs asSiglL, aSigR ; audio sent to outputs

endin
</CsInstruments>
<CsScore>

; 3 notes one after the other to demonstrate 3 methods used by pan2
7Pl p2 p3  p4

i1 e 4.5 0 ; equal power (harmonic)
i1 5 4.5 1 ; square root method
il110e 4.5 2 ; linear

e

</CsScore>

</CsoundSynthesizer>

3-D BINAURAL ENCODING

3-D binaural simulation is availalable in a number of opcodes that make use of spectral data files
that provide information about the filtering and inter-aural delay effects of the human head. The
older one of these is hrtfer. The newer ones are hrtfmove, hrtfmove2 and hrftstat. The main
parameters for controlfor the opcodes are azimuth (where the sound source in the horizontal
plane relative to the direction we are facing) and elevation (the angle by which the sound
deviates from this horizontal plane, either above or below). Both these parameters are defined in
degrees. 'Binaural' infers that the stereo output of this opcode should be listened to using
headphones so that no mixing in the air of the two channels occurs before they reach our ears.

The following example take a monophonic source sound of noise impulses and processes it using
the hrtfmove2 opcode. First of all the sound is rotated around us in the horizontal plane then it is
raised above our head then dropped below us and finally returned to be straight and level in
front of us.For this example to work you will need to download the files hrtf-44100-left.dat and

hrtf-44100-right.dat and place them in your SADIR (see setting environment variables) or in the
same directory as the .csd.

EXAMPLE 05B03.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100

ksmps = 10

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2rn12, 10, 1 ; sine wave

giLFOShape ftgen 0, 0, 131072, 19, 0.5, 1, 180, 1 ; U-shape parabola
instr 1

; create an audio signal (noise impulses)

krate oscil 30,0.2,9giLFOShape ; rate of impulses

; amplitude envelope: a repeating pulse

KEnv loopseg krate+3,0, 0,1, 0.1,0, 0.9,0

aSig pinkish kEnv ; noise pulses

; -- apply binaural 3d processing --

; azimuth (direction in the horizontal plane)

kAz linseg 0, 8, 360

; elevation (held horizontal for 8 seconds then up, then down, then horizontal



kElev linseg 0, 8, 0, 4, 90, 8, -40, 4, 0
; apply hrtfmove2 opcode to audio source - create stereo ouput
aLeft, aRight hrtfmove2 asSig, kAz, kElev, \
"hrtf-44100-left.dat", "hrtf-44100-right.dat"

outs aLeft, aRight ; audio to outputs
endin
</CsInstruments>
<CsScore>
i1 0 60 ; instr 1 plays a note for 60 seconds
e
</CsScore>

</CsoundSynthesizer>



2 9 - FILTERS

Audio filters can range from devices that subtly shape the tonal characteristics of a sound to
ones that dramatically remove whole portions of a sound spectrum to create new sounds.
Csound includes several versions of each of the commonest types of filters and some more
esoteric ones also. The full list of Csound's standard filters can be found here. A list of the more
specialized filters can be found here.

LOWPASS FILTERS

The first type of filter encountered is normally the lowpass filter. As its name suggests it allows
lower frequencies to pass through unimpeded and therefore filters higher frequencies. The
crossover frequency is normally referred to as the 'cutoff' frequency. Filters of this type do not
really cut frequencies off at the cutoff point like a brick wall but instead attenuate increasingly
according to a cutoff slope. Different filters offer cutoff slopes of different of steepness. Another
aspect of a lowpass filter that we may be concerned with is a ripple that might emerge at the
cutoff point. If this is exaggerated intentionally it is referred to as resonance or 'Q".

In the following example, three lowpass filters filters are demonstrated: tone, butlp and
moogladder. tone offers a quite gentle cutoff slope and therefore is better suited to subtle
spectral enhancement tasks. butlp is based on the Butterworth filter design and produces a
much sharper cutoff slope at the expense of a slightly greater CPU overhead. moogladder is an
interpretation of an analogue filter found in a moog synthesizer - it includes a resonance control.

In the example a sawtooth waveform is played in turn through each filter. Each time the cutoff
frequency is modulated using an envelope, starting high and descending low so that more and
more of the spectral content of the sound is removed as the note progresses. A sawtooth
waveform has been chosen as it contains strong higher frequencies and therefore demonstrates
the filters characteristics well; a sine wave would be a poor choice of source sound on account of
its lack of spectral richness

EXAMPLE 05C01.csd

<CsoundSynthesizer>

<CsOptions>
-odac ; activates real time sound output
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
instr 1
prints "tone%n" ; indicate filter type in console
asSig vco2 0.5, 150 ; input signal is a sawtooth waveform
kef expon 10000, p3,20 ; descending cutoff frequency
asSig tone asSig, kcf ; filter audio signal
out aSig ; filtered audio sent to output
endin
instr 2
prints "butlp%n" ; indicate filter type in console
aSig vco2 0.5, 150 ; input signal is a sawtooth waveform
kef expon 10000, p3,20 ; descending cutoff frequency
asig butlp aSig, kcf ; filter audio signal
out aSig ; filtered audio sent to output
endin
instr 3
prints "moogladder%n" ; indicate filter type in console
aSig vco2 0.5, 150 ; input signal is a sawtooth waveform
kef expon 10000, p3, 20 ; descending cutoff frequency
asSig moogladder asSig, kcf, 0.9 ; filter audio signal
out aSig ; filtered audio sent to output

endin



</CsInstruments>

<CsScore>
3 notes to demonstrate each filter in turn

7

i1 3; tone

i 24 3; butlp

i 3 8 3; moogladder
e

</CsScore>

</CsoundSynthesizer>

HIGHPASS FILTERS

A highpass filter is the converse of a lowpass filter; frequencies higher than the cutoff point are
allowed to pass whilst those lower are attenuated. atone and buthp are the analogues of tone
and butlp. Resonant highpass filters are harder to find but Csound has one in bgrez. bgrez is
actually a multi-mode filter and could also be used as a resonant lowpass filter amongst other
things. We can choose which mode we want by setting one of its input arguments appropriately.
Resonant highpass is mode 1. In this example a sawtooth waveform is again played through each
of the filters in turn but this time the cutoff frequency moves from low to high. Spectral content
is increasingly removed but from the opposite spectral direction.

EXAMPLE 05C02.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
instr 1
prints "atone%n" ; indicate filter type in console
aSig vco2 0.2, 150 ; input signal is a sawtooth waveform
kef expon 20, p3, 20000 ; define envelope for cutoff frequency
aSig atone asSig, kcf ; filter audio signal
out aSig ; filtered audio sent to output
endin
instr 2
prints "buthp%n" ; indicate filter type in console
asig vco2 0.2, 150 ; input signal is a sawtooth waveform
kef expon 20, p3, 20000 ; define envelope for cutoff frequency
aSig buthp asSig, kcf ; filter audio signal
out aSig ; filtered audio sent to output
endin
instr 3
prints "bgrez(mode:1)%n" ; indicate filter type in console
asSig vco2 0.03, 150 ; input signal is a sawtooth waveform
kef expon 20, p3, 20000 ; define envelope for cutoff frequency
asSig bgrez asig, kcf, 30, 1 ; filter audio signal
out aSig ; filtered audio sent to output
endin
</CsInstruments>
<CsScore>

; 3 notes to demonstrate each filter in turn
i10e 3 ; atone

i 25 3 ; buthp

i 3 10 3 ; bqrez(mode 1)
e
</CsScore>

</CsoundSynthesizer>

BANDPASS FILTERS

A bandpass filter allows just a narrow band of sound to pass through unimpeded and as such is a



little bit like a combination of a lowpass and highpass filter connected in series. We normally
expect at least one additional parameter of control: control over the width of the band of
frequencies allowed to pass through, or 'bandwidth'.

In the next example cutoff frequency and bandwidth are demonstrated independently for two
different bandpass filters offered by Csound. First of all a sawtooth waveform is passed through
a reson filter and a butbp filter in turn while the cutoff frequency rises (bandwidth remains
static). Then pink noise is passed through reson and butbp in turn again but this time the cutoff
frequency remains static at 5000Hz while the bandwidth expands from 8 to 5000Hz. In the
latter two notes it will be heard how the resultant sound moves from almost a pure sine tone to
unpitched noise. butbp is obviously the Butterworth based bandpass filter. reson can produce
dramatic variations in amplitude depending on the bandwidth value and therefore some balancing
of amplitude in the output signal may be necessary if out of range samples and distortion are to
be avoided. Fortunately the opcode itself includes two modes of amplitude balancing built in but
by default neither of these methods are active and in this case the use of the balance opcode
may be required. Mode 1 seems to work well with spectrally sparse sounds like harmonic tones
while mode 2 works well with spectrally dense sounds such as white or pink noise.

EXAMPLE 05C03.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
instr 1
prints "reson%n" ; indicate filter type in console
asSig vco2 0.5, 150 ; input signal: sawtooth waveform
kef expon 20, p3,10000 ; rising cutoff frequency
asig reson asSig, kcf,kecf*0.1,1 ; filter audio signal
out aSig ; send filtered audio to output
endin
instr 2
prints "butbp%n" ; indicate filter type in console
asSig vco2 0.5, 150 ; input signal: sawtooth waveform
kef expon 20, p3,10000 ; rising cutoff frequency
asig butbp aSig, kcf, kcf*0.1 ; filter audio signal
out aSig ; send filtered audio to output
endin
instr 3
prints "reson%n" ; indicate filter type in console
aSig pinkish 0.5 ; input signal: pink noise
kbw expon 10000, p3, 8 ; contracting bandwidth
asig reson aSig, 5000, kbw, 2 ; filter audio signal
out aSig ; send filtered audio to output
endin
instr 4
prints "butbp%n" ; indicate filter type in console
aSig pinkish 0.5 ; input signal: pink noise
kbw expon 10000, p3,8 ; contracting bandwidth
asSig butbp aSig, 5000, kbw ; filter audio signal
out aSig ; send filtered audio to output
endin
</CsInstruments>
<CsScore>
i10 3 ; reson cutoff frequency rising
i24 3 ; butbp cutoff frequency rising
i 38 6 ; reson bandwidth increasing
i 4 15 6 ; butbp bandwidth increasing
e
</CsScore>

</CsoundSynthesizer>



COMB FILTERING

A comb filter is a special type of filter that creates a harmonically related stack of resonance
peaks on an input sound file. A comb filter is really just a very short delay effect with feedback.
Typically the delay times involved would be less than 0.05 seconds. Many of the comb filters
documented in the Csound Manual term this delay time, 'loop time'. The fundamental of the
harmonic stack of resonances produced will be 1/loop time. Loop time and the frequencies of the
resonance peaks will be inversely proportions| — as loop time get smaller, the frequencies rise.
For a loop time of 0.02 seconds the fundamental resonance peak will be 50Hz, the next peak
100Hz, the next 150Hz and so on. Feedback is normally implemented as reverb time - the time
taken for amplitude to drop to 1/1000 of its original level or by 60dB. This use of reverb time as
opposed to feedback alludes to the use of comb filters in the design of reverb algorithms.
Negative reverb times will result in only the odd numbered partials of the harmonic stack being
present.

The following example demonstrates a comb filter using the ycomb opcode. This opcode allows
for performance time modulation of the loop time parameter. For the first 5 seconds of the
demonstration the reverb time increases from 0.1 seconds to 2 while the loop time remains
constant at 0.005 seconds. Then the loop time decreases to 0.0005 seconds over 6 seconds
(the resonant peaks rise in frequency), finally over the course of 10 seconds the loop time rises
to 0.1 seconds (the resonant peaks fall in frequency). A repeating noise impulse is used as a
source sound to best demonstrate the qualities of a comb filter.

EXAMPLE 05C04.csd
<CsoundSynthesizer>

<CsOptions>
-odac ;activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1
; -- generate an input audio signal (noise impulses) --
; repeating amplitude envelope:
KEnv loopseg 1,0, 0,1,0.005,1,0.0001,0,0.9949,0
asig pinkish KEnv*0.6 ; pink noise pulses

; apply comb filter to input signal
krvt linseg 0.1, 5, 2 ; reverb time
alpt expseg 0.005,5,0.005,6,0.0005,10,0.1,1,0.1 loop time
aRes vcomb asig, krvt, alpt, 0.1 comb filter
out aRes audio to output
endin

</CsInstruments>

<CsScore>
il10 25

e
</CsScore>

</CsoundSynthesizer>



30 - DELAY AND FEEDBACK

A delay in DSP is a special kind of buffer sometimes called a circular buffer. The length of this
buffer is finite and must be declared upon initialization as it is stored in RAM. One way to think
of the circular buffer is that as new items are added at the beginning of the buffer the oldest
items at the end of the buffer are being 'shoved' out.

Besides their typical application for creating echo effects, delays can also be used to implement
chorus, flanging, pitch shifting and filtering effects.

Csound offers many opcodes for implementing delays. Some of these offer varying degrees of
quality - often balanced against varying degrees of efficiency whilst some are for quite
specialized purposes.

To begin with this section is going to focus upon a pair of opcodes, delayr and delayw. Whilst not
the most efficient to use in terms of the number of lines of code required, the use of delayr and
delayw helps to clearly illustrate how a delay buffer works. Besides this, delayr and delayw
actually offer a lot more flexibility and versatility than many of the other delay opcodes.

When using delayr and delayw the establishement of a delay buffer is broken down into two
steps: reading from the end of the buffer using delayr (and by doing this defining the length or
duration of the buffer) and then writing into the beginning of the buffer using delayw.

The code employed might look like this:

asigout delayr 1
delayw aSigIn

where 'aSigin' is the input signal written into the beginning of the buffer and 'aSigOut' is the
output signal read from the end of the buffer. The fact that we declare reading from the buffer
before writing to it is sometimes initially confusing but, as alluded to before, one reason this is
done is to declare the length of the buffer. The buffer length in this case is 1 second and this will
be the apparent time delay between the input audio signal and audio read from the end of the
buffer.

The following example implements the delay described above in a .csd file. An input sound of
sparse sine tone pulses is created. This is written into the delay buffer from which a new audio
signal is created by read from the end of this buffer. The input signal (sometimes referred to as
the dry signal) and the delay output signal (sometimes referred to as the wet signal) are mixed
and set to the output. The delayed signal is attenuated with respect to the input signal.

EXAMPLE 05D01.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

Sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0, 0, 2A12, 10, 1 ; a sine wave

instr 1
; -- create an input signal: short 'blip' sounds --
kEnv loopseg 0.5, 0, 0, 0,0.0005, 1 , 0.1, 0, 1.9, ©
kCps randomh 400, 600, 0.5
aEnv interp KEnv
aSig poscil aEnv, kCps, giSine

; -- create a delay buffer --
aBufout delayr 0.3
delayw aSig

; -- send audio to output (input and output to the buffer are mixed)
out asSig + (aBufout*0.4)



endin
</CsInstruments>

<CsScore>

i10e 25

e

</CsScore>
</CsoundSynthesizer>

If we mix some of the delayed signal into the input signal that is written into the buffer then we
will delay some of the delayed signal thus creating more than a single echo from each input
sound. Typically the sound that is fed back into the delay input is attenuated so that sound cycle
through the buffer indefinitely but instead will eventually die away. We can attenuate the
feedback signal by multiplying it by a value in the range zero to 1. The rapidity with which echoes
will die away is defined by how close the zero this value is. The following example implements a
simple delay with feedback.

EXAMPLE 05D02.csd
<CsoundSynthesizer>
<CsOptions>
-odac ;activates real time sound output

</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0, 0, 2712, 10, 1 ; a sine wave

instr 1
; -- create an input signal: short 'blip' sounds --
kEnv loopseg 0.5,0,0,0,0.0005,1,0.1,0,1.9,0 ; repeating envelope
kCps randomh 400, 600, 0.5 ; '"held' random values
aEnv interp KEnv ; a-rate envelope
asSig poscil akEnv, kCps, giSine ; generate audio

; -- create a delay buffer --
iFdback = 0.7 ; feedback ratio
aBufout delayr 0.3 ; read audio from end of buffer
; write audio into buffer (mix in feedback signal)
delayw aSig+(aBufout*iFdback)

; send audio to output (mix the input signal with the delayed signal)
out asig + (aBufout*0.4)
endin

</CsInstruments>

<CsScore>
i1025

e
</CsScore>

</CsoundSynthesizer>

Constructing a delay effect in this way is rather limited as the delay time is static. If we want to
change the delay time we need to reinitialise the code that implements the delay buffer. A more
flexible approach is to read audio from within the buffer using one of Csounds opcodes for
'tapping’ a delay buffer, deltap, deltapi, deltap3 or deltapx. The opcodes are listed in order of
increasing quality which also reflects an increase in computational expense. In the next example
a delay tap is inserted within the delay buffer (between the delayr and the delayw) opcodes. As
our delay time is modulating quite quickly we will use deltapi which uses linear interpolation as it
rebuilds the audio signal whenever the delay time is moving. Note that this time we are not using
the audio output from the delayr opcode as we are using the audio output from deltapi instead.
The delay time used by deltapi is created by randomi which creates a random function of
straight line segments. A-rate is used for the delay time to improve the accuracy of its values,
use of k-rate would result in a noticeably poorer sound quality. You will notice that as well as
modulating the time gap between echoes, this example also modulates the pitch of the echoes -
if the delay tap is static within the buffer there would be no change in pitch, if is moving towards
the beginning of the buffer then pitch will rise and if it is moving towards the end of the buffer



then pitch will drop. This side effect has led to digital delay buffers being used in the design of
many pitch shifting effects.

The user must take care that the delay time demanded from the delay tap does not exceed the
length of the buffer as defined in the delayr line. If it does it will attempt to read data beyond
the end of the RAM buffer - the results of this are unpredictable. The user must also take care
that the delay time does not go below zero, in fact the minumum delay time that will be
permissible will be the duration of one k cycle (ksmps/sr).

EXAMPLE 05D03.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0, 0, 2n12, 10, 1 ; a sine wave

instr 1
; -- create an input signal: short 'blip' sounds --
kEnv loopseg ©0.5,0,0,0,0.0005,1,0.1,0,1.9,0
aEnv interp kEnv
asSig poscil aEnv, 500, giSine
aDelayTime randomi 0.05, 0.2, 1 ; modulating delay time
; -- create a delay buffer --
aBufout delayr 0.2 ; read audio from end of buffer
aTap deltapi aDelayTime ; 'tap' the delay buffer

delayw asSig + (aTap*0.9) ; write audio into buffer

; send audio to the output (mix the input signal with the delayed signal)

out aSig + (aTap*0.4)
endin
</CsInstruments>
<CsScore>
i1l10 30
e
</CsScore>

</CsoundSynthesizer>

We are not limited to inserting only a single delay tap within the buffer. If we add further taps
we create what is known as a multi-tap delay. The following example implements a multi-tap
delay with three delay taps. Note that only the final delay (the one closest to the end of the
buffer) is fed back into the input in order to create feedback but all three taps are mixed and
sent to the output. There is no reason not to experiment with arrangements other than this but
this one is most typical.

EXAMPLE 05D04.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0, 0, 2712, 10, 1 ; a sine wave

instr 1
; -- create an input signal: short 'blip' sounds --
KEnv loopseg 0.5,0,0,0,0.0005,1,0.1,0,1.9,0 ; repeating envelope



kCps randomh 400, 1000, 0.5 ; '"held' random values
aEnv interp KEnv ; a-rate envelope
asig poscil aEnv, kCps, giSine ; generate audio

; -- create a delay buffer --
aBufout delayr 0.5 ; read audio end buffer
aTapl deltap 0.1373 ; delay tap 1
aTap2 deltap 0.2197 ; delay tap 2
aTap3 deltap 0.4139 ; delay tap 3
delayw asSig + (aTap3*0.4) ; write audio into buffer

; send audio to the output (mix the input signal with the delayed signals)
out aSig + ((aTapl+aTap2+aTap3)*0.4)
endin

</CsInstruments>

<CsScore>
il10 25

e
</CsScore>

</CsoundSynthesizer>

As mentioned at the top of this section many familiar effects are actually created from using
delay buffers in various ways. We will briefly look at one of these effects: the flanger. Flanging
derives from a phenomenon which occurs when the delay time becomes so short that we begin
to no longer perceive individual echoes but instead a stack of harmonically related resonances
are perceived the frequencies of which are in simple ratio with 1/delay_time. This effect is known
as a comb filter. When the delay time is slowly modulated and the resonances shifting up and
down in sympathy the effect becomes known as a flanger. In this example the delay time of the
flanger is modulated using an LFO that employs a U-shaped parabola as its waveform as this
seems to provide the smoothest comb filter modulations.

EXAMPLE 05D05.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

Sr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

giSine ftgen 0, 0, 2r12, 10, 1 ; a sine wave

giLFOShape ftgen 0, 0, 2n12, 19, 0.5, 1, 180, 1 ; u-shaped parabola
instr 1

asSig pinkish 0.1 ; pink noise

aMod poscil 0.005, 0.05, gilLFOShape ; delay time LFO

ioffset = ksmps/sr ; minimum delay time

kFdback linseg 0.8,(p3/2)-0.5,0.95,1,-0.95 ; feedback

; -- create a delay buffer --

aBufout delayr 0.5 ; read audio from end buffer

aTap deltap3 aMod + iOffset ; tap audio from within buffer

delayw asSig + (aTap*kFdback) ; write audio into buffer

; send audio to the output (mix the input signal with the delayed signal)
out asSig + aTap
endin

</CsInstruments>
<CsScore>

i10 25

e

</CsScore>

</CsoundSynthesizer>



31 - REVERBERATION

Reverb is the effect a room or space has on a sound where the sound we perceive is a mixture
of the direct sound and the dense overlapping echoes of that sound reflecting off walls and
objects within the space.

Csound's earliest reverb opcodes are reverb and nreverb. By today's standards these sound
rather crude and as a consequence modern Csound users tend to prefer the more recent
opcodes freeverb and reverbsc.

The typical way to use a reverb is to run as a effect throughout the entire Csound performance
and to send it audio from other instruments to which it adds reverb. This is more efficient than
initiating a new reverb effect for every note that is played. This arrangement is a reflection of
how a reverb effect would be used with a mixing desk in a conventional studio. There are several
methods of sending audio from sound producing instruments to the reverb instrument, three of
which will be introduced in the coming examples

The first method uses Csound's global variables so that an audio variable created in one
instrument and be read in another instrument. There are several points to highlight here. First
the global audio variable that is use to send audio the reverb instrument is initialized to zero
(silence) in the header area of the orchestra.

This is done so that if no sound generating instruments are playing at the beginning of the
performance this variable still exists and has a value. An error would result otherwise and
Csound would not run. When audio is written into this variable in the sound generating
instrument it is added to the current value of the global variable.

This is done in order to permit polyphony and so that the state of this variable created by other
sound producing instruments is not overwritten. Finally it is important that the global variable is
cleared (assigned a value of zero) when it is finished with at the end of the reverb instrument. If
this were not done then the variable would quickly 'explode’ (get astronomically high) as all
previous instruments are merely adding values to it rather that redeclaring it. Clearing could be
done simply by setting to zero but the clear opcode might prove useful in the future as it
provides us with the opportunity to clear many variables simultaneously.

This example uses the freeverb opcode and is based on a plugin of the same name. Freeverb
has a smooth reverberant tail and is perhaps similar in sound to a plate reverb. It provides us
with two main parameters of control: 'room size' which is essentially a control of the amount of
internal feedback and therefore reverb time, and 'high frequency damping' which controls the
amount of attenuation of high frequencies. Both there parameters should be set within the
range O to 1. For room size a value of zero results in a very short reverb and a value of 1 results
in a very long reverb. For high frequency damping a value of zero provides minimum damping of
higher frequencies giving the impression of a space with hard walls, a value of 1 provides
maximum high frequency damping thereby giving the impression of a space with soft surfaces
such as thick carpets and heavy curtains.

EXAMPLE 05EQ1.csd
<CsoundSynthesizer>

<CsOptions>
-odac ; activates real time sound output
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

gaRvbSend init 0 ; global audio variable initialized to zero

instr 1 ; sound generating instrument (sparse noise bursts)
kEnv loopseg 0.5,0,0,1,0.003,1,0.0001,0,0.9969,0 ; amp. env.
aSig pinkish kEnv ; noise pulses
outs aSig, aSig ; audio to outs



iRvbSendAmt = 0.8 ; reverb send amount (0 - 1)
; add some of the audio from this instrument to the global reverb send variable
gaRvbSend = gaRvbSend + (aSig * iRvbSendAmt)

endin

instr 5 ; reverb - always on
kroomsize init 0.85 ; room size (range 0 to 1)
kHFDamp init 0.5 ; high freq. damping (range 0 to 1)
; create reverberated version of input signal (note stereo input and output)
aRvbL,aRvbR freeverb gaRvbSend, gaRvbSend, kroomsize, kHFDamp

outs aRvbL, aRvbR ; send audio to outputs
clear gaRvbSend ; clear global audio variable
endin
</CsInstruments>
<CsScore>

i1 0 300 ; noise pulses (input sound)
i 50 300 ; start reverb

e

</CsScore>

</CsoundSynthesizer>

The next example uses Csound's zak patching system to send audio from one instrument to
another. The zak system is a little like a patch bay you might find in a recording studio. Zak
channels can be a, k or i-rate. These channels will be addressed using numbers so it will be
important to keep track of what each numbered channel is used for. Our example will be very
simple in that we will only be using one zak audio channel. Before using any of the zak opcodes
for reading and writing data we must initialize zak storage space. This is done in the orchestra
header area using the zakinit opcode. This opcode initializes both a and k rate channels; we must
intialize at least one of each even if we don't require both.

zakinit 1, 1

The audio from the sound generating instrument is mixed into a zak audio channel the zawm
opcode like this:

zawm asSig * iRvbSendAmt, 1

This channel is read from in the reverb instrument using the zar opcode like this:

aInSig zar 1

Because audio is begin mixed into our zak channel but it is never redefined (only mixed into) it
needs to be cleared after we have finished with it. This is accomplished at the bottom of the
reverb instrument using the zacl opcode like this:

zacl 0, 1

This example uses the reverbsc opcode. It too has a stereo input and output. The arguments
that define its character are feedback level and cutoff frequency. Feedback level should be in the
range zero to 1 and controls reverb time. Cutoff frequency should be within the range of human
hearing (20Hz -20kHz) and less than the Nyqyvist frequency (sr/2) - it controls the cutoff
frequencies of low pass filters within the algorithm.

EXAMPLE 05E02.csd
<CsoundSynthesizer>

<CsOptions>
-odac ; activates real time sound output
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

; initialize zak space - one a-rate and one k-rate variable.
; We will only be using the a-rate variable.
zakinit 1, 1

instr 1 ; sound generating instrument - sparse noise bursts
KEnv loopseg 0.5,0, 0,1,0.003,1,0.0001,0,0.9969,0 ; amp. env.



aSig pinkish kEnv ; pink noise pulses

outs aSig, aSig ; send audio to outputs
iRvbSendAmt = 0.8 ; reverb send amount (0 - 1)
; write to zak audio channel 1 with mixing

zawm aSig*iRvbSendAmt, 1

endin

instr 5 ; reverb - always o

aInSig zar 1 ; read first zak audio channel
kFblvl init 0.88 ; feedback level - i.e. reverb time
kFco init 8000 ; cutoff freq. of a filter within the reverb

; create reverberated version of input signal (note stereo input and output)
aRvbL,aRvbR reverbsc aInSig, aInSig, kFblvl, kFco

outs aRvbL, aRvbR ; send audio to outputs
zacl 0, 1 ; clear zak audio channels
endin
</CsInstruments>
<CsScore>

i 10 10 ; noise pulses (input sound)
i 50 12 ; start reverb

e

</CsScore>

</CsoundSynthesizer>

reverbsc contains a mechanism to modulate delay times internally which has the effect of
harmonically blurring sounds the longer they are reverberated. This contrasts with freeverb's
rather static reverberant tail. On the other hand screverb's tail is not as smooth as that of
freeverb, inidividual echoes are sometimes discernible so it may not be as well suited to the
reverberation of percussive sounds. Also be aware that as well as reducing the reverb time, the
feedback level parameter reduces the overall amplitude of the effect to the point where a
setting of 1 will result in silence from the opcode.

A more recent option for sending sound from instrument to instrument in Csound is to use the
chn... opcodes. These opcodes can also be used to allow Csound to interface with external
programs using the software bus and the Csound API.

EXAMPLE 05E03.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activates real time sound output

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
instr 1 ; sound generating instrument - sparse noise bursts
KEnv loopseg 0.5,0, 0,1,0.003,1,0.0001,0,0.9969,0 ; amp. envelope
asig pinkish kEnv ; noise pulses
outs aSig, aSig ; audio to outs
iRvbSendAmt = 0.4 ; reverb send amount (0 - 1)
;write audio into the named software channel:
chnmix aSig*iRvbSendAmt, "ReverbSend"
endin

instr 5 ; reverb (always on)

aInSig chnget "ReverbSend" ; read audio from the named channel
kTime init 4 ; reverb time
kHDif init 0.5 ; '"high frequency diffusion' (0 - 1)
aRvb nreverb aInSig, kTime, kHDif ; create reverb signal
outs aRvb, aRvb ; send audio to outputs
chnclear "ReverbSend" ; clear the named channel
endin
</CsInstruments>
<CsScore>

i1 0 10 ; noise pulses (input sound)
i 50 12 ; start reverb
e



</CsScore>

</CsoundSynthesizer>

THE SCHROEDER REVERB DESIGN

Many reverb algorithms including Csound's freeverb, reverb and reverbn are based on what is
known as the Schroeder reverb design. This was a design proposed in the early 1960s by the
physicist Manfred Schroeder. In the Schroeder reverb a signal is passed into four parallel comb
filters the outputs of which are summed and then passed through two allpass filters as shown in
the diagram below. Essentially the comb filters provide the body of the reverb effect and the
allpass filters smear their resultant sound to reduce ringing artefacts the comb filters might
produce. More modern designs might extent the number of filters used in an attempt to create
smoother results. The freeverb opcode employs eight parallel comb filters followed by four series
allpass filters on each channel. The two main indicators of poor implementations of the Schoeder
reverb are individual echoes being excessively apparent and ringing artefacts. The results
produced by the freeverb opcode are very smooth but a criticism might be that it is lacking in
character and is more suggestive of a plate reverb than of a real room.

> COMB ——
» COMB —
INPUT —— —m ALLPASS —»| ALLPASS —»OUTPUT
» COMB —
» COMB —

The next example implements the basic Schroeder reverb with four parallel comb filters followed
by three series allpass filters. This also proves a useful exercise in routing audio signals within
Csound. Perhaps the most crucial element of the Schroeder reverb is the choice of loop times
for the comb and allpass filters — careful choices here should obviate the undesirable artefacts
mentioned in the previous paragraph. If loop times are too long individual echoes will become
apparent, if they are too short the characteristic ringing of comb filters will become apparent. If
loop times between filters differ too much the outputs from the various filters will not fuse. It is
also important that the loop times are prime numbers so that echoes between different filters
do not reinforce each other. It may also be necessary to adjust loop times when implementing
very short reverbs or very long reverbs. The duration of the reverb is effectively determined by
the reverb times for the comb filters. There is ceratinly scope for experimentation with the
design of this example and exploration of settings other than the ones suggested here.

This example consists of five instruments. The fifth instrument implements the reverb algorithm
described above. The first four instruments act as a kind of generative drum machine to provide
source material for the reverb. Generally sharp percussive sounds provide the sternest test of a
reverb effect. Instrument 1 triggers the various synthesized drum sounds (bass drum, snare and
closed hi-hat) produced by instruments 2 to 4.

EXAMPLE 05E04.csd

<CsoundSynthesizer>

<CsOptions>

-odac -mo@

; activate real time sound output and suppress note printing
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100

ksmps = 1
nchnls = 2
0dbfs = 1

giSine ftgen 0, 0, 2A12, 10, 1 ; a sine wave



éavaSend init c] ; global audio variable initialized
giRvbSendAmt init 0.4 ; reverb send amount (range 0 - 1)

instr 1 ; trigger drum hits
ktrigger metro 5 ; rate of drum strikes
kdrum random 2, 4.999 ; randomly choose which drum to hit
schedkwhen ktrigger, 0, 0, kdrum, 0, 0.1 ; strike a drum
endin

instr 2 ; sound 1 - bass drum

iamp random 0, 0.5 ; amplitude randomly chosen

p3 = 0.2 ; define duration for this sound
aenv line 1,p3,0.001 ; amplitude envelope (percussive)
icps exprand 30 ; cycles-per-second offset

kcps expon icps+120,p3, 20 ; pitch glissando

asSig oscil aenv*0.5*iamp, kcps,giSine ; oscillator

outs aSig, aSig ; send audio to outputs
gaRvbSend = gaRvbSend + (aSig * giRvbSendAmt) ; add to send
endin

instr 3 ; sound 3 - snare

iAmp random 0, 0.5 ; amplitude randomly chosen
p3 = 0.3 ; define duration
aEnv expon 1, p3, 0.001 ; amp. envelope (percussive)
aNse noise 1, © ; Create noise component
iCps exprand 20 ; cps offset
kCps expon 250 + iCps, p3, 200+iCps ; create tone component gliss.
alJit randomi 0.2, 1.8, 10000 ; jitter on freq.
aTne oscil aEnv, kCps*aJit, giSine ; create tone component
asig sum aNse*0.1, aTne ; mix noise and tone components
aRes comb aSig, 0.02, 0.0035 ; comb creates a 'ring'
asig = aRes * aEnv * iAmp ; apply env. and amp. factor
outs aSig, aSig ; send audio to outputs

gaRvbSend = gaRvbSend + (aSig * giRvbSendAmt); add to send

endin

instr 4 ; sound 4 - closed hi-hat

iAmp random 0, 1.5 amplitude randomly chosen

;

p3 = 0.1 ; define duration for this sound
aEnv expon 1,p3,0.001 ; amplitude envelope (percussive)
aSig noise akEnv, 0 ; create sound for closed hi-hat
asSig buthp asSig*0.5*iAmp, 12000 ; highpass filter sound
asig buthp aSig, 12000 ; -and again to sharpen cutoff

outs aSig, aSig ; send audio to outputs
gaRvbSend = gaRvbSend + (aSig * giRvbSendAmt) ; add to send

endin

instr 5 ; schroeder reverb - always on
; read in variables from the score
kRvt p4
kMix p5

; print some information about current settings gleaned from the score

prints "Type:"
prints p6
prints "\\nReverb Time:%2.1f\\nDry/Wet Mix:%2.1f\\n\\n", p4,p5
; four parallel comb filters
al comb gaRvbSend, kRvt, 0.0297; comb filter 1
a2 comb gaRvbSend, kRvt, 0.0371; comb filter 2
a3 comb gaRvbSend, kRvt, 0.0411; comb filter 3
a4 comb gaRvbSend, kRvt, 0.0437; comb filter 4
asum sum al,a2,a3,a4 ; sum (mix) the outputs of all comb filters

; two allpass filters in series

a5 alpass asum, 0.1, 0.005 ; send mix through first allpass filter
aout alpass a5, 0.1, 0.02291 ; send 1st allpass through 2nd allpass
amix ntrpol gaRvbSend, aOut, kMix ; create a dry/wet mix
outs amix, amix ; send audio to outputs
clear gaRvbSend ; clear global audio variable
endin
</CsInstruments>
<CsScore>
; room reverb
i1 o010 ; start drum machine trigger instr

i5 © 11 1 0.5 "Room Reverb" ; start reverb

; tight ambience

i1 11 10 ; start drum machine trigger instr
i 511 11 0.3 0.9 "Tight Ambience" ; start reverb

; long reverb (low in the mix)



i1 2210 ‘ ' ; start drum machine
i 522 15 5 0.1 "Long Reverb (Low In the Mix)" ; start reverb

very long reverb (high in the mix)

’

i1 37 10 ; start drum machine
i 537 25 8 0.9 "Very Long Reverb (High in the Mix)" ; start reverb

e

</CsScore>

</CsoundSynthesizer>

This chapter has introduced some of the more recent Csound opcodes for delay-line based
reverb algorithms which in most situations can be used to provide high quality and efficient
reverberation. Convolution offers a whole new approach for the creation of realistic reverbs that
imitate actual spaces - this technique is demonstrated in the Convolution chapter.



32 AM / RM / WAVESHAPING

An introduction as well as some background theory of amplitude modulation, ring modulation and
waveshaping is given in the fourth chapter entitled "sound-synthesis". As all of these techniques
merely modulate the amplitude of a signal in a variety of ways, they can also be used for the

modification of non-synthesized sound. In this chapter we will explore amplitude modulation, ring

modulation and waveshaping as applied to non-synthesized sound.

AMPLITUDE MODULATION

With "sound-synthesis", the principle of AM was shown as a amplitude multiplication of two sine
oscillators. Later we've used a more complex modulators, to generate more complex spectrums.
The principle also works very well with sound-files (samples) or live-audio-input.

Karlheinz Stockhausens "Mixtur fir Orchester, vier Sinusgeneratoren und vier Ringmodulatoren ”
(1964) was the first piece which used analog ringmodulation (AM without DC-offset) to alter the
acoustic instruments pitch in realtime during a live-performance. The word ringmodulation
inherites from the analog four-diode circuit which was arranged in a "ring".

In the following example shows how this can be done digitally in Csound. In this case a sound-file
works as the carrier which is modulated by a sine-wave-osc. The result sounds like old 'Harald
Bode' pitch-shifters from the 1960's.

Example: 05F01.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

Sr = 48000
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1 ; Ringmodulation

aSinel poscil 0.8, p4, 1

aSample diskin2 "fox.wav", 1, 0, 1, 0, 32
out aSinel*aSample

endin

</CsInstruments>
<CsScore>
f 10 1024 10 1 ; sine

i10 2 400
i122 800
i14 2 1600
i16 2 200
i1 8 2 2400
e
</CsScore>

</CsoundSynthesizer>
; written by Alex Hofmann (Mar. 2011)

WAVESHAPING

In chapter 04E waveshaping has been described as a method of applying a transfer function to
an incoming signal. It has been discussed that the table which stores the transfer function must
be read with an interpolating table reader to avoid degradation of the signal. On the other hand,
degradation can be a nice thing for sound modification. So let us start with this branch here.

Bit Depth Reduction

If the transfer function itself is linear, but the table of the function is small, and no interpolation
is applied to the amplitude as index to the table, in effect the bit depth is reduced. For a function



table of size 4, a line becomes a staircase:

Bit Depth = high
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This is the sounding result

EXAMPLE 05G01.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

giTrnsFnc ftgen 0, 0, 4,

instr 1

aAmp soundin
aIndx =
awavShp table

-7, -1, 3, 1

"fox.wav"
(aAmp + 1) / 2
aIndx, giTrnsFnc, 1

outs awavsShp, awWavShp

endin

</CsInstruments>
<CsScore>

il10 2.767
</CsScore>
</CsoundSynthesizer>

;example by joachim heintz

Transformation and Distortion

=<V

In general, the transformation of sound in applying waveshaping depends on the transfer
function. The following example applies at first a table which does not change the sound at all,
because the function just says y = x. The second one leads aready to a heavy distortion, though
"just" the samples between an amplitude of -0.1 and +0.1 are erased. Tables 3 to 7 apply some
chebychev functions which are well known from waveshaping synthesis. Finally, tables 8 and 9
approve that even a meaningful sentence and a nice music can regarded as noise ...

<CsoundSynthesizer>
<CsOptions>



-odac

</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
giNat ftgen 1, 0, 2049, -7, -1, 2048, 1
gibist ftgen 2, @, 2049, -7, -1, 1024, -.1, 0, .1, 1024, 1
gicheb1 ftgen 3, @, 513, 3, -1, 1, 0, 1
giCheb2 ftgen 4, 0, 513, 3, -1, 1, -1, 0, 2
giCheb3 ftgen 5, ©, 513, 3, -1, 1, 0, 3, 0, 4
giCheb4 ftgen 6, ©, 513, 3, -1, 1, 1, 0, 8, 0, 4
giChebs ftgen 7, ©, 513, 3, -1, 1, 3, 20, -30, -60, 32, 48
giFox ftgen 8, 0, -121569, 1, "fox.wav", 0, 0, 1
giGuit ftgen 9, 0, -235612, 1, "ClassGuit.wav", 0, 0, 1
instr 1
iTrnsFnc = p4
kEnv linseg 6, .01, 1, p3-.2, 1, .01, O
aL, aR soundin "ClassGuit.wav"
aIndxL = (aL + 1) / 2
awWavShpL tablei aIndxL, iTrnsFnc, 1
aIndxR = (aR + 1) / 2
awWavShpR tablei aIndxR, iTrnsFnc, 1
outs awWavShpL*kEnv, aWavShpR*kEnv
endin
</CsInstruments>
<CsScore>
i1 0 7 1 ;natural though waveshaping
i1+ . 2 ;rather heavy distortion
i1+ 3 ;chebychev for 1st partial
i1+ 4 ;chebychev for 2nd partial
i1+ . 5 ;chebychev for 3rd partial
i1+ 6 ;chebychev for 4th partial
i1+ 7 ,after dodge/jerse p.136
i1+ .8 ;fox
i1+ .9 ;guitar
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

Instead of using the "self-built" method which has been described here, you can use the Csound
opcode distort. It performs the actual waveshaping process and gives a nice control about the

amount of distortion in the kdist parameter. Here is a simple example:2

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
sr = 44100
ksmps = 32
nchnls = 2
0dbfs =1
gil ftgen 1,0,257,9,.5,1,270 ;sinoid (also the next)
gi2 ftgen 2,0,257,9,.5,1,270,1.5,.33,90,2.5,.2,270,3.5, .143,90
gi3 ftgen 3,0,129,7,-1,128,1 ;actually natural
gi4 ftgen 4,0,129,10,1 ;sine
gi5 ftgen 5,0,129,10,1,0,1,0,1,0,1,0,1 ;odd partials
gi6 ftgen 6,0,129,21,1 ;white noise
gi7 ftgen 7,0,129,9,.5,1,0 ;half sine
gi8 ftgen 8,0,129,7,1,64,1,0,-1,64,-1 ;square wave
instr 1
ifn = p4
ivol = p5
kdist line 0, p3, 1 ;increase the distortion over p3
aL, aR soundin "ClassGuit.wav"
aoutl distort aL, kdist, ifn
aout2 distort aR, kdist, ifn
outs aoutl*ivol, aout2*ivol
endin
</CsInstruments>
<CsScore>
i1e0e711
i.+. 2.3
i+ 31
i+ 4 .5
i+ 5 .15
i+ 6 .04



i+ .7 .02
i.+ .8 .02
</CsScore>
</CsoundSynthesizer>
;example by joachim heintz

1. This is the same for Granular Synthesis which can either be "pure" synthesis or applied so
sampled sound.>

2. Have a look at lain McCurdy's Realtime example (which has also been ported to CsoundQt
by René Jopi) for 'distort’ for a more interactive exploration of the opcode.”™



33. GRANULAR SYNTHESIS

This chapter will focus upon granular synthesis used as a DSP technique upon recorded sound
files and will introduce techniques including time stretching, time compressing and pitch shifting.
The emphasis will be upon asynchronous granulation. For an introduction to synchronous granular
synthesis using simple waveforms please refer to chapter 04F.

Csound offers a wide range of opcodes for sound granulation. Each has its own strengths and
weaknesses and suitability for a particular task. Some are easier to use than others, some, such
as granule and partikkel, are extremely complex and are, at least in terms of the number of
input arguments they demand, amongst Csound's most complex opcodes.

SNDWARP - TIME STRETCHING AND PITCH SHIFTING

sndwarp may not be Csound's newest or most advanced opcode for sound granulation but it is
quite easy to use and is certainly up to the task of time stretching and pitch shifting. sndwarp
has two modes by which we can modulate time stretching characteristics, one in which we define
a 'stretch factor', a value of 2 defining a stretch to twice the normal length, and the other in
which we directly control a pointer into the file. The following example uses sndwarp's first mode
to produce a sequence of time stretches and pitch shifts. An overview of each procedure will be
printed to the terminal as it occurs. sndwarp does not allow for k-rate modulation of grain size
or density so for this level we need to look elsewhere.

You will need to make sure that a sound file is available to sndwarp via a GENO1 function table.
You can replace the one used in this example with one of your own by replacing the reference to
'ClassicalGuitar.wav'. This sound file is stereo therefore instrument 1 uses the stereo version of
sndwarp. 'sndwarpst’. A mismatch between the number of channels in the sound file and the
version of sndwarp used will result in playback at an unexpected pitch. You will also need to give
GENO1 an appropriate size that will be able to contain your chosen sound file. You can calculate
the table size you will need by muiltiplying the duration of the sound file (in seconds) by the
sample rate - for stereo files this value should be doubled - and then choose the next power of
2 above this value. You can download the sample used in the example at

http://www.iainmccurdy.org/csoundrealtimeexamples/sourcematerials/ClassicalGuitar.wav.

sndwarp describes grain size as 'window size' and it is defined in samples so therefore a window
size of 44100 means that grains will last for 1s each (when sample rate is set at 44100). Window
size randomization (irandw) adds a random number within that range to the duration of each
grain. As these two parameters are closely related it is sometime useful to set irandw to be a
fraction of window size. If irandw is set to zero we will get artefacts associated with synchronous
granular synthesis.

sndwarp (along with many of Csound's other granular synthesis opcodes) requires us to supply it
with a window function in the form of a function table according to which it will apply an
amplitude envelope to each grain. By using different function tables we can alternatively create
softer grains with gradual attacks and decays (as in this example), with more of a percussive
character (short attack, long decay) or 'gate'-like (short attack, long sustain, short decay).

EXAMPLE 05G01.csd
<CsoundSynthesizer>

<CsOptions>

-odac -mo

; activate real-time audio output and suppress printing
</CsOptions>

<CsInstruments>
; example written by Iain McCurdy

sr = 44100
ksmps = 16
nchnls = 2
0dbfs = 1

; waveform used for granulation
giSound ftgen 1,0,2097152,1,"ClassicalGuitar.wav",0,0,0



; window function - used as an amplitude envelope for each grain
; (first half of a sine wave)
giwFn  ftgen 2,0,16384,9,0.5,1,0

instr 1
kamp = 0.1
ktimewarp expon p4,p3,p5 ; amount of time stretch, 1=none 2=double
kresample line p6,p3,p7 ; pitch change 1=none 2=+loct
ifn1 = giSound ; sound file to be granulated
ifn2 = giwFn ; window shaped used to envelope every grain
ibeg = [¢]
iwsize = 3000 ; grain size (in sample)
irandw = 3000 ; randomization of grain size range
ioverlap = 50 ; density
itimemode = [¢] ; O=stretch factor 1=pointer

prints p8 ; print a description

7
aSigL,aSigR sndwarpst kamp, ktimewarp, kresample,ifni,ibeg, \
iwsize, irandw, ioverlap,ifn2, itimemode

outs aSigL,aSigR
endin
</CsInstruments>
<CsScore>

;p3 = stretch factor begin / pointer location begin

;p4 = stretch factor end / pointer location end
;p5 = resample begin (transposition)
;p6 = resample end (transposition)
;p7 = procedure description
;p8 = description string
; Pl p2 p3 p4 p5 pé p7 p8
i1 0 101 1 1 1 "No time stretch. No pitch shift."
i1 10.5 10 2 2 1 1 "%nTime stretch x 2."
i1 21 201 20 1 1 \
"%nGradually increasing time stretch factor from x 1 to x 20."

i1 41.5101 1 2 2 "%nPitch shift x 2 (up 1 octave)."
i1 52 101 1 0.5 0.5 "%nPitch shift x 0.5 (down 1 octave)."
i1 62.5101 1 4 0.25 \

"%nPitch shift glides smoothly from 4 (up 2 octaves) to 0.25 (down 2 octaves)."
i1 73 15 4 4 1 1 \

"%nA chord containing three transpositions: \

unison, +5th, +10th. (x4 time stretch.)"

i1 73 154 4 [3/2] [3/2] ""
i1 73 15 4 4 3 3 "
e
</CsScore>

</CsoundSynthesizer>

The next example uses sndwarp's other timestretch mode with which we explicitly define a
pointer position from where in the source file grains shall begin. This method allows us much
greater freedom with how a sound will be time warped; we can even freeze movement an go
backwards in time - something that is not possible with timestretching mode.

This example is self generative in that instrument 2, the instrument that actually creates the
granular synthesis textures, is repeatedly triggered by instrument 1. Instrument 2 is triggered
once every 12.5s and these notes then last for 40s each so will overlap. Instrument 1 is played
from the score for 1 hour so this entire process will last that length of time. Many of the
parameters of granulation are chosen randomly when a note begins so that each note will have
unique characteristics. The timestretch is created by a line function: the start and end points of
which are defined randomly when the note begins. Grain/window size and window size
randomization are defined randomly when a note begins - notes with smaller window sizes will
have a fuzzy airy quality wheres notes with a larger window size will produce a clearer tone.
Each note will be randomly transposed (within a range of +/- 2 octaves) but that transposition
will be quantized to a rounded number of semitones - this is done as a response to the equally
tempered nature of source sound material used.

Each entire note is enveloped by an amplitude envelope and a resonant lowpass filter in each
case encasing each note under a smooth arc. Finally a small amount of reverb is added to
smooth the overall texture slightly

EXAMPLE 05G02.csd

<CsoundSynthesizer>

<CsOptions>
-odac



</CsOptions>

<CsInstruments>
;example written by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

; the name of the sound file used is defined as a string variable -

; - as it will be used twice in the code.

; This simplifies adapting the orchestra to use a different sound file
gSfile = "ClassicalGuitar.wav"

; waveform used for granulation
giSound ftgen 1,0,2097152,1,9Sfile,0,0,0

; window function - used as an amplitude envelope for each grain
giwFn ftgen 2,0,16384,9,0.5,1,0

seed 0 ; seed the random generators from the system clock
gaSendL init ©® ; initialize global audio variables
gaSendR init 0

instr 1 ; triggers instrument 2

ktrigger metro 0.08 ;metronome of triggers. One every 12.5s
schedkwhen ktrigger,0,0,2,0,40 ;trigger instr. 2 for 40s
endin

instr 2 ; generates granular synthesis textures
;define the input variables

ifn1 gisound

ilen = nsamp(ifnl)/sr

iPtrStart random 1,ilen-1

iPtrTrav random -1,1

ktimewarp line iPtrStart, p3,iPtrStart+iPtrTrav
kamp linseg 0,p3/2,0.2,p3/2,0
iresample random -24,24.99

iresample = semitone(int(iresample))
ifn2 = giwFn

ibeg = [¢]

iwsize random 400,10000

irandw = iwsize/3

ioverlap = 50

itimemode = 1

; create a stereo granular synthesis texture using sndwarp
aSigL,aSigR sndwarpst kamp,ktimewarp,iresample,ifni,ibeg, \

iwsize,irandw, ioverlap,ifn2, itimemode
; envelope the signal with a lowpass filter

kef expseg 50,p3/2,12000,p3/2,50
asSigL moogvcf2 asigL, kcf, 0.5
aSigR moogvcf2 aSigR, kcf, 0.5

; add a little of our audio signals to the global send variables -
; - these will be sent to the reverb instrument (2)

gaSendL = gaSendL+(aSigL*0.4)
gaSendR = gaSendR+(aSigR*0.4)
outs aSigL,aSigR
endin

instr 3 ; reverb (always on)
aRvbL, aRvbR reverbsc gaSendL, gaSendR, 0.85, 8000

outs aRvbL, aRvbR
;clear variables to prevent out of control accumulation
clear gaSendL, gaSendR
endin
</CsInstruments>
<CsScore>
; p1 p2 p3

i1 © 3600 ; triggers instr 2
i 3 O 3600 ; reverb instrument
e

</CsScore>

</CsoundSynthesizer>

GRANULE - CLOUDS OF SOUND

The granule opcode is one of Csound's most complex opcodes requiring up to 22 input arguments
in order to function. Only a few of these arguments are available during performance (k-rate) so



it is less well suited for real-time modulation, for real-time a more nimble implementation such
as syncgrain, fog, or grain3 would be recommended. For more complex realtime granular techniques, the
partikkel opcode can be used. The granule opcode as used here, proves itself ideally suited at the
production of massive clouds of granulated sound in which individual grains are often completed
indistinguishable. There are still two important k-rate variables that have a powerful effect on
the texture created when they are modulated during a note, they are: grain gap - effectively
density - and grain size which will affect the clarity of the texture - textures with smaller grains
will sound fuzzier and airier, textures with larger grains will sound clearer. In the following
example transeg envelopes move the grain gap and grain size parameters through a variety of
different states across the duration of each note.

With granule we define a number a grain streams for the opcode using its 'ivoice' input argument.
This will also have an effect on the density of the texture produced. Like sndwarp's first
timestretching mode, granule also has a stretch ratio parameter. Confusingly it works the other
way around though, a value of 0.5 will slow movement through the file by 1/2, 2 will double is and
so on. Increasing grain gap will also slow progress through the sound file. granule also provides up
to four pitch shift voices so that we can create chord-like structures without having to use more
than one iteration of the opcode. We define the number of pitch shifting voices we would like to
use using the 'ipshift' parameter. If this is given a value of zero, all pitch shifting intervals will be
ignored and grain-by-grain transpositions will be chosen randomly within the range +/-1 octave.
granule contains built-in randomizing for several of it parameters in order to easier facilitate
asynchronous granular synthesis. In the case of grain gap and grain size randomization these are
defined as percentages by which to randomize the fixed values.

Unlike Csound's other granular synthesis opcodes, granule does not use a function table to define
the amplitude envelope for each grain, instead attack and decay times are defined as
percentages of the total grain duration using input arguments. The sum of these two values
should total less than 100.

Five notes are played by this example. While each note explores grain gap and grain size in the
same way each time, different permutations for the four pitch transpositions are explored in
each note. Information about what these transpositions are, are printed to the terminal as each
note begins.

EXAMPLE 05G03.csd
<CsoundSynthesizer>

<CsOptions>

-odac -mo

; activate real-time audio output and suppress note printing
</CsOptions>

<CsInstruments>
; example written by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1

;waveforms used for granulation
giSoundL ftgen 1,0,1048576,1,"ClassicalGuitar.wav",0,0,1
gisoundR ftgen 2,0,1048576,1,"ClassicalGuitar.wav",0,0,2

seed 0; seed the random generators from the system clock
gaSendL init ©
gaSendR init 0

instr 1 ; generates granular synthesis textures

prints po
;define the input variables
kamp linseg 0,1,0.1,p3-1.2,0.1,0.2,0
ivoice = 64
iratio = 0.5
imode = 1
ithd = 0]
ipshift = p8
igskip = 0.1
igskip_os = 0.5
ilength = nsamp(giSoundL)/sr
kgap transeg 0,20,14,4, 5,8,8, 8,-10,0, 15,0,0.1
igap_os = 50
kgsize transeg 0.04,20,0,0.04, 5,-4,0.01, 8,0,0.01, 15,5,0.4
igsize_os = 50



iatt = 30
idec = 30
iseedL = [¢]
iseedR = 0.21768
ipitch1 = p4
ipitch2 = p5
ipitch3 = p6
ipitch4 = p7

;create the granular synthesis textures; one for each channel

aSigL granule kamp,ivoice,iratio,imode,ithd,giSoundL,ipshift,igskip,\
igskip_os,ilength, kgap, igap_os, kgsize,igsize_os, iatt, idec, iseedL,\
ipitchi,ipitch2,ipitch3,ipitch4

aSigR granule kamp,ivoice,iratio,imode,ithd, giSoundR, ipshift, igskip,\
igskip_os,ilength, kgap,igap_os, kgsize,igsize_os,iatt, idec, iseedR,\
ipitchi,ipitch2,ipitch3,ipitch4

;send a little to the reverb effect

gaSendL = gaSendL+(aSigL*0.3)
gaSendR = gaSendR+(aSigR*0.3)
outs aSigL,aSigR
endin

instr 2 ; global reverb instrument (always on)
; use reverbsc opcode for creating reverb signal
aRvbL, aRvbR reverbsc gaSendL, gaSendR, 0.85, 8000

outs aRvbL, aRvbR
;clear variables to prevent out of control accumulation
clear gaSendL, gaSendR
endin
</CsInstruments>
<CsScore>
; p4 = pitch 1
; p5 = pitch 2
; p6 = pitch 3
; p7 = pitch 4
; p8 = number of pitch shift voices (@=random pitch)
; Pl p2 p3 p4 ps5 p6 p7 p8 po
i1 0 48 1 1 1 1 4 "pitches: all unison"
i1 + . 1 0.5 0.25 2 4 \
"%npitches: 1(unison) 0.5(down 1 octave) 0.25(down 2 octaves) 2(up 1 octave)"
i1 + . 1 2 4 8 4 "%npitches: 1 2 4 8"
i1 o+ . 1 [3/4] [5/6] [4/3] 4 "%npitches: 1 3/4 5/6 4/3"
i1 + . 1 1 1 1 0 "%npitches: all random"

i 2 © [48*5+2]; reverb instrument
e
</CsScore>

</CsoundSynthesizer>

GRAIN DELAY EFFECT

Granular techniques can be used to implement a flexible delay effect, where we can do
transposition, time modification and disintegration of the sound into small particles, all within the
delay effect itself. To implement this effect, we record live audio into a buffer (Csound table),
and let the granular synthesizer/generator read sound for the grains from this buffer. We need a
granular synthesizer that allows manual control over the read start point for each grain, since
the relationship between the write position and the read position in the buffer determines the
delay time. We've used the fof2 opcode for this purpose here.

<CsoundSynthesizer>

<CsOptions>

; activate real-time audio output and suppress note printing
</CsOptions>

<CsInstruments>
;example by Oeyvind Brandtsegg

sr = 44100
ksmps = 512
nchnls = 2
0dbfs = 1

; empty table, live audio input buffer used for granulation
giTablen = 131072
giLive ftgen 0,0,giTablen, 2,0

; sigmoid rise/decay shape for fof2, half cycle from bottom to top
giSigRise ftgen ©,0,8192,19,0.5,1,270,1

; test sound
giSample ftgen 0,0,524288,1,"fox.wav", 0,0,0

instr 1
; test sound, replace with live input
al loscil 1, 1, giSample, 1
outch 1, a1
chnmix a1, "liveAudio"



endin

instr 2
; write live input to buffer (table)
al chnget "liveAudio"

gkstart tablewa gilLive, a1, ©
if gkstart < giTablen goto end

gkstart = @
end:
a0 =0
chnset a®, "liveAudio"
endin
instr 3
; delay parameters
kDelTim = 0.5 ; delay time in seconds (max 2.8 seconds)
kFeed = 0.8
; delay time random dev
kTmod = 0.2

kTmod rnd31 kTmod, 1
kDelTim = kDelTim+kTmod
; delay pitch random dev
kFmod linseg 0, 1, 0, 1, 0.1, 2, 0, 1, 0
kFmod rnd31 kFmod, 1
; grain delay processing
kamp = ampdbfs(-8)

kfund = 25 ; grain rate
kform = (1+kFmod)*(sr/giTablen) ; grain pitch transposition
koct =0
kband =0
kdur = 2.5 / kfund ; duration relative to grain rate
kris = 0.5%kdur
kdec = 0.5*kdur
kphs = (gkstart/giTablen)-(kDelTim/(giTablen/sr)) ; calculate grain phase based on delay time
kgliss =0
al fof2 1, kfund, kform, koct, kband, kris, kdur, kdec, 100, \
giLive, giSigRise, 86400, kphs, kgliss
outch 2, al*kamp
chnset al*kFeed, "liveAudio"
endin
</CsInstruments>
<CsScore>
i1020
i2020
i3020
e
</CsScore>
</CsoundSynthesizer>

CONCLUSION

Two contrasting opcodes for granular synthesis have been considered in this chapter but this is
in no way meant to suggest that these are the best, in fact it is strongly recommended to
explore all of Csound's other opcodes as they each have their own unique character. The
syncgrain family of opcodes (including also syncloop and diskgrain) are deceptively simple as their
k-rate controls encourages further abstractions of grain manipulation, fog is designed for FOF
synthesis type synchronous granulation but with sound files and partikkel offers a comprehensive
control of grain characteristics on a grain-by-grain basis inspired by Curtis Roads' encyclopedic
book on granular synthesis 'Microsound'.



34 CONVOLUTION

Convolution is a mathematical procedure whereby one function is modified by another. Applied to
audio, one of these functions might be a sound file or a stream of live audio whilst the other will
be, what is referred to as, an impulse response file; this could actually just be another shorter
sound file. The longer sound file or live audio stream will be modified by the impulse response so
that the sound file will be imbued with certain qualities of the impulse response. It is important
to be aware that convolution is a far from trivial process and that realtime performance may be
a frequent consideration. Effectively every sample in the sound file to be processed will be
multiplied in turn by every sample contained within the impulse response file. Therefore, for a 1
second impulse response at a sampling frequency of 44100 hertz, each and every sample of the
input sound file or sound stream will undergo 44100 multiplication operations. Expanding upon this
even further, for 1 second's worth of a convolution procedure this will result in 44100 x 44100 (or
1,944,810,000) multiplications. This should provide some insight into the processing demands of a
convolution procedure and also draw attention to the efficiency cost of using longer impulse
response files.

The most common application of convolution in audio processing is reverberation but convolution
is equally adept at, for example, imitating the filtering and time smearing characteristics of
vintage microphones, valve amplifiers and speakers. It is also used sometimes to create more
unusual special effects. The strength of convolution based reverbs is that they implement
acoustic imitations of actual spaces based upon 'recordings' of those spaces. All the quirks and
nuances of the original space will be retained. Reverberation algorithms based upon networks of
comb and allpass filters create only idealised reverb responses imitating spaces that don't
actually exist. The impulse response is a little like a 'fingerprint' of the space. It is perhaps easier
to manipulate characteristics such as reverb time and high frequency diffusion (i.e. lowpass
filtering) of the reverb effect when using a Schroeder derived algorithm using comb and allpass
filters but most of these modification are still possible, if not immediately apparent, when
implementing reverb using convolution. The quality of a convolution reverb is largely dependent
upon the quality of the impulse response used. An impulse response recording is typically
achieved by recording the reverberant tail that follows a burst of white noise. People often
employ techniques such as bursting balloons to achieve something approaching a short burst of
noise. Crucially the impulse sound should not excessively favour any particular frequency or
exhibit any sort of resonance. More modern techniques employ a sine wave sweep through all
the audible frequencies when recording an impulse response. Recorded results using this
technique will normally require further processing in order to provide a usable impulse response
file and this approach will normally be beyond the means of a beginner.

Many commercial, often expensive, implementations of convolution exist both in the form of
software and hardware but fortunately Csound provides easy access to convolution for free.
Csound currently lists six different opcodes for convolution, convolve (convle), cross2, dconv,
ftconv, ftmorf and pconvolve. convolve (convle) and dconv are earlier implementations and are
less suited to realtime operation, cross2 relates to FFT-based cross synthesis and ftmorf is used
to morph between similar sized function table and is less related to what has been discussed so
far, therefore in this chapter we shall focus upon just two opcodes, pconvolve and ftconv.

PCONVOLVE

pconvolve is perhaps the easiest of Csound's convolution opcodes to use and the most useful in
a realtime application. It uses the uniformly partitioned (hence the 'p') overlap-save algorithm
which permits convolution with very little delay (latency) in the output signal. The impulse
response file that it uses is referenced directly, i.e. it does not have to be previously loaded into
a function table, and multichannel files are permitted. The impulse response file can be any
standard sound file acceptable to Csound and does not need to be pre-analysed as is required by
convolve. Convolution procedures through their very nature introduce a delay in the output signal
but pconvolve minimises this using the algorithm mentioned above. It will still introduce some
delay but we can control this using the opcode's ‘ipartitionsize' input argument. What value we
give this will require some consideration and perhaps some experimentation as choosing a high
partition size will result in excessively long delays (only an issue in realtime work) whereas very
low partition sizes demand more from the CPU and too low a size may result in buffer under-
runs and interrupted realtime audio. Bear in mind still that realtime CPU performance will depend



heavily on the length of the impulse file. The partition size argument is actually an optional
argument and if omitted it will default to whatever the software buffer size is as defined by the
-b command line flag. If we specify the partition size explicitly however, we can use this
information to delay the input audio (after it has been used by pconvolve) so that it can be
realigned in time with the latency affected audio output from pconvolve - this will be essential in
creating a 'wet/dry' mix in a reverb effect. Partition size is defined in sample frames therefore if
we specify a partition size of 512, the delay resulting from the convolution procedure will be
512/sr (sample rate).

In the following example a monophonic drum loop sample undergoes processing through a
convolution reverb implemented using pconvolve which in turn uses two different impulse files.
The first file is a more conventional reverb impulse file taken in a stairwell whereas the second is
a recording of the resonance created by striking a terracota bowl sharply. If you wish to use the
three sound files | have used in creating this example the mono input sound file is here and the
two stereo sound files used as impulse responses are here and here. You can, of course, replace
them with ones of your own but remain mindful of mono/stereo/multichannel integrity.

EXAMPLE 05H01.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>

44100
512

2

1

sr
ksmps
nchnls
0dbfs

gasig init o

instr 1 ; sound file player
gasig diskin2 p4,1,0,1
endin

instr 2 ; convolution reverb

; Define partion size.

; Larger values require less CPU but result in more latency.

; Smaller values produce lower latency but may cause -

; - realtime performance issues

ipartitionsize = 256

arl,ar2 pconvolve gasig, p4,ipartitionsize

; create a delayed version of the input signal that will sync -
; - with convolution output

adel delay gasig,ipartitionsize/sr
; create a dry/wet mix
aMixL ntrpol adel,ar1*0.1, p5
aMixR ntrpol adel,ar2*0.1,p5
outs aMixL, aMixR

gasig = c]

endin
</CsInstruments>
<CsScore>

instr 1. sound file player
p4=input soundfile

instr 2. convolution reverb
p4=impulse response file
p5=dry/wet mix (0 - 1)

i106 8.6 "loop.wav"
2 0 10 "Stairwell.wav" 0.3

i1 10 8.6 "loop.wav"

i 2 10 10 "Dish.wav" 0.8
e

</CsScore>

</CsoundSynthesizer>

FTCONV

ftconv (abbreviated from 'function table convolution) is perhaps slightly more complicated to use




than pconvolve but offers additional options. The fact that ftconv utilises an impulse response
that we must first store in a function table rather than directly referencing a sound file stored
on disk means that we have the option of performing transformations upon the audio stored in
the function table before it is employed by ftconv for convolution. This example begins just as
the previous example: a mono drum loop sample is convolved first with a typical reverb impulse
response and then with an impulse response derived from a terracotta bowl. After twenty
seconds the contents of the function tables containing the two impulse responses are reversed
by calling a UDO (instrument 3) and the convolution procedure is repeated, this time with a
'backwards reverb' effect. When the reversed version is performed the dry signal is delayed
further before being sent to the speakers so that it appears that the reverb impulse sound
occurs at the culmination of the reverb build-up. This additional delay is switched on or off via
p6 from the score. As with pconvolve, ftconv performs the convolution process in overlapping
partitions to minimise latency. Again we can minimise the size of these partitions and therefore
the latency but at the cost of CPU efficiency. ftconv's documentation refers to this partition size
as 'iplen’ (partition length). ftconv offers further facilities to work with multichannel files beyond
stereo. When doing this it is suggested that you use GEN52 which is designed for this purpose.
GENO1 seems to work fine, at least up to stereo, provided that you do not defer the table size
definition (size=0). With ftconv we can specify the actual length of the impulse response - it will
probably be shorter than the power-of-2 sized function table used to store it - and this action
will improve realtime efficiency. This optional argument is defined in sample frames and defaults
to the size of the impulse response function table.

EXAMPLE 05H02.csd

<CsoundSynthesizer>

<CsOptions>
-odac
</CsOptions>

<CsInstruments>

sr
ksmps
nchnls
0dbfs

44100
512

2

1

; impulse responses stored as stereo GENO1 function tables
gistairwell ftgen 1,0,131072,1,"Stairwell.wav",0,0,0
gibish ftgen 2,0,131072,1,"Dish.wav",0,0,0

gasig init 0

; reverse function table UDO
opcode tab_reverse,0,i

ifn xin

iTabLen = ftlen(ifn)

iTableBuffer ftgentmp 0,0, -iTabLen, -2, ©

icount = 0

loop:

ival table iTabLen-icount-1, ifn
tableiw ival,icount,iTableBuffer
loop_1t icount,1,iTabLen, loop

icount = 0

loop2:

ival table icount,iTableBuffer
tableiw ival,icount,ifn
loop_1t icount,1,iTabLen, loop2

endop

instr 3 ; reverse the contents of a function table
tab_reverse p4
endin

instr 1 ; sound file player
gasig diskin2 p4,1,0,1
endin

instr 2 ; convolution reverb

; buffer length

iplen = 1024

; derive the length of the impulse response

iirlen = nsamp(p4)

arl,ar2 ftconv gasig, p4, iplen,0Q, iirlen

; delay compensation. Add extra delay if reverse reverb is used.
adel delay gasig, (iplen/sr) + ((iirlen/sr)*p6)

; Ccreate a dry/wet mix

aMixL ntrpol adel,ar1*0.1,p5



aMixR ntrbol adel,ar2*0.1,b5

outs aMixL, aMixR
gasig = 0
endin
</CsInstruments>
<CsScore>

instr 1. sound file player
p4=input soundfile
instr 2. convolution reverb
p4=impulse response file
p5=dry/wet mix (0 - 1)
p6=reverse reverb switch (0=off,1=on)
instr 3. reverse table contents
p4=function table number

'stairwell' impulse response
i10 8.5 "loop.wav"
i201010.30

'dish' impulse response
1 10 8.5 "loop.wav"
i210 10 2 0.8 0

He~-

reverse the impulse responses

e~

32001
i32002
; 'stairwell' impulse response (reversed)
i1 21 8.5 "loop.wav"

i2211010.51

'dish' impulse response (reversed)
1 31 8.5 "loop.wav"
i23110 20.51

[

e
</CsScore>

</CsoundSynthesizer

Suggested avenues for further exploration with ftconv could be applying envelopes to, filtering
and time stretching and compressing the function table stored impulse files before use in
convolution.

The impulse responses | have used here are admittedly of rather low quality and whilst it is
always recommended to maintain as high standards of sound quality as possible the user should
not feel restricted from exploring the sound transformation possibilities possible form whatever
source material they may have lying around. Many commercial convolution algorithms demand a
proprietary impulse response format inevitably limiting the user to using the impulse responses
provided by the software manufacturers but with Csound we have the freedom to use any
sound we like.



35. FOURIER TRANSFORMATION /
SPECTRAL PROCESSING

A fourier transformation (FT) is used to transfer an audio-signal from time-domain to the
frequency-domain. This can, for instance, be used to analyze and visualize the spectrum of the
signal appearing in a certain time span. Fourier transform and subsequent manipulations in the
frequency domain open a wide area of interesting sound transformations, like time stretching,
pitch shifting and much more.

HOW DOES IT WORK?

The mathematician J.B. Fourier (1768-1830) developed a method to approximate unknown
functions by using trigonometric functions. The advantage of this was, that the properties of the
trigonometric functions (sin & cos) were well-known and helped to describe the properties of the
unknown function.

In music, a fourier transformed signal is decomposed into its sum of sinoids. In easy words:
Fourier transform is the opposite of additive synthesis. Ideally, a sound can be splitted by Fourier
transformation into its partial components, and resynthesized again by adding these
components.

Because of sound beeing represented as discrete samples in the computer, the computer
implementation calculates a discrete Fourier transform (DFT). As each transformation needs a
certain number of samples, one main decision in performing DFT is about the number of samples
used. The analysis of the frequency components is better the more samples are used for it. But
as samples are progression in time, a caveat must be found for each FT in music between either
better time resolution (fewer samples) or better frequency resolution (more samples). A typical
value for FT in music is to have about 20-100 "snapshots" per second (which can be compared to
the single frames in a film or video).

At a sample rate of 48000 samples per second, these are about 500-2500 samples for one
frame or window. The standard method for DFT in computer music works with window sizes
which are power-of-two samples long, for instance 512, 1024 or 2048 samples. The reason for
this restriction is that DFT for these power-of-two sized frames can be calculated much faster.
So it is called Fast Fourier Transform (FFT), and this is the standard implementation of the
Fourier transform in audio applications.

HOW TO DO IT IN CSOUND?

As usual, there is not just one way to work with FFT and spectral processing in Csound. There
are several families of opcodes. Each family can be very useful for a specific approach of working
in the frequency domain. Have a look at the Spectral Processing overview in the Csound Manual.
This introduction will focus on the so-called "Phase Vocoder Streaming" opcodes (all these
opcodes begin with the charcters "pvs") which came into Csound by the work of Richard Dobson,
Victor Lazzarini and others. They are designed to work in realtime in the frequency domain in
Csound; and indeed they are not just very fast but also easier to use than FFT implementations
in some other applications.

CHANGING FROM TIME-DOMAIN TO FREQUENCY-DOMAIN

For dealing with signals in the frequency domain, the pvs opcodes implement a new signal type,
the f-signals. Csound shows the type of a variable in the first letter of its name. Each audio
signal starts with an a, each control signal with a k, and so each signal in the frequency domain
used by the pvs-opcodes starts with an f.

There are several ways to create an f-signal. The most common way is to convert an audio
signal to a frequency signal. The first example covers two typical situations:

o the audio signal derives from playing back a soundfile from the hard disc (instr 1)
e the audio signal is the live input (instr 2)



(Be careful - the example can produce a feedback three seconds after the start. Best results are

with headphones.)

EXAMPLE 05/01.csd !

<CsoundSynthesizer>
<CsOptions>

-i adc -o dac
</CsOptions>
<CsInstruments>
;Example by Joachim
;uses the file "fox

Heintz
.wav" (distributed with the Csound Manual)

sr = 44100
ksmps = 32
nchnls = 2
0dbfs = 1
;general values for fourier transform
gifftsiz = 1024
gioverlap = 256
giwintyp = 1 ;von hann window
instr 1 ;soundfile to fsig
asig soundin "fox.wav"
fsig pvsanal asig, gifftsiz, gioverlap, gifftsiz*2, giwintyp
aback pvsynth fsig
outs aback, aback
endin
instr 2 ;live input to fsig
prints "LIVE INPUT NOW!%n"
ain inch 1 ;live input from channel 1
fsig pvsanal ain, gifftsiz, gioverlap, gifftsiz, giwintyp
alisten pvsynth fsig
outs alisten, alisten
endin
</CsInstruments>
<CsScore>
i103
i2310
</CsScore>
</CsoundSynthesizer>

You should hear first the "fox.wav" sample, and then, the slightly delayed live input signal. The
delay depends first on the general settings for realtime input (ksmps, -b and -B: see chapter 2D).
But second, there is also a delay added by the FFT. The window size here is 1024 samples, so the
additional delay is 1024/44100 = 0.023 seconds. If you change the window size gifftsiz to 2048 or
to 512 samples, you should get a larger or shorter delay. - So for realtime applications, the
decision about the FFT size is not only a question "better time resolution versus better
frequency resolution”, but it is also a question of tolerable latency.

What happens in the example above? At first, the audio signal (asig, ain) is being analyzed and
transformed in an f-signal. This is done via the opcode pvsanal. Then nothing happens but
transforming the frequency domain signal back into an audio signal. This is called inverse Fourier
transformation (IFT or IFFT) and is done by the opcode pvs;{nth.Z In this case, it is just a test: to
see if everything works, to hear the results of different window sizes, to check the latency. But
potentially you can insert any other pvs opcode(s) in between this entrance and exit:

FREQUENCY
DOMAIN

f-Signal <further f-signal modifications>

opcode pvsanal pvsynth

TIME

DOMAIN Audio-Signal Audio-Signal

PITCH SHIFTING

Simple pitch shifting can be done by the opcode pvscale. All the frequency data in the f-signal are
scaled by a certain value. Multiplying by 2 results in transposing an octave upwards; multiplying
by 0.5 in transposing an octave downwards. For accepting cent values instead of ratios as input,



the cent opcode can be used

EXAMPLE 05102.csd
<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
;example by joachim heintz
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
gifftsize = 1024
gioverlap = gifftsize / 4
giwinsize = gifftsize
giwinshape = 1; von-Hann window
instr 1 ;scaling by a factor
ain soundin "fox.wav"
fftin pvsanal ain, gifftsize, gioverlap, giwinsize, giwinshape
fftscal pvscale fftin, p4
aout pvsynth fftscal

out aout
endin
instr 2 ;scaling by a cent value
ain soundin "fox.wav"
fftin pvsanal ain, gifftsize, gioverlap, giwinsize, giwinshape
fftscal pvscale fftin, cent(p4)
aout pvsynth fftscal

out aout/3
endin
</CsInstruments>
<CsScore>
i1 0 3 1; original pitch
i1 3 3 .5; octave lower
i 16 3 2 ;octave higher
i2930
i 29 3 400 ;major third
i 29 3700 ;fifth
e
</CsScore>

</CsoundSynthesizer>

Pitch shifting via FFT resynthesis is very simple in general, but more or less complicated in detail.
With speech for instance, there is a problem because of the formants. If you simply scale the
frequencies, the formants are shifted, too, and the sound gets the typical "Mickey-Mousing"
effect. There are some parameters in the pvscale opcode, and some other pvs-opcodes which
can help to avoid this, but the result always depends on the individual sounds and on your ideas.

TIME STRETCH/COMPRESS

As the Fourier transformation seperates the spectral information from the progression in time,
both elements can be varied independently. Pitch shifting via the pvscale opcode, as in the
previous example, is independent from the speed of reading the audio data. The complement is
changing the time without changing the pitch: time stretching or time compression.

The simplest way to alter the speed of a sampled sound is using pvstanal (which is new in
Csound 5.13). This opcode transforms a sound which is stored in a function table, in an f-signal,
and time manipulations are simply done by altering the ktimescal parameter.

Example 05103.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;example by joachim heintz
Sr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

;store the sample "fox.wav" in a function table (buffer)



gifil ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 1

;general values for the pvstanal opcode
giamp = 1 ;amplitude scaling

gipitch = 1 ;pitch scaling
gidet = 0 ;onset detection
giwrap = 0 ;no loop reading
giskip = 0 ;start at the beginning
gifftsiz = 1024 ;fft size
giovlp = gifftsiz/8 ;overlap size
githresh = 0 ;threshold
instr 1 ;simple time stretching / compressing
fsig pvstanal p4, giamp, gipitch, gifil, gidet, giwrap, giskip,
gifftsiz, giovlp, githresh

aout pvsynth fsig

out aout
endin

instr 2 ;automatic scratching

kspeed randi 2, 2, 2 ;speed randomly between -2 and 2
kpitch randi p4, 2, 2 ;pitch between 2 octaves lower or higher
fsig pvstanal kspeed, 1, octave(kpitch), gifil
aout pvsynth fsig
aenv linen aout, .003, p3, .1
out aout
endin
</CsInstruments>
<CsScore>
; speed
i103 1
i . + 10 .33
i, +2 3
s
i 2 0 10 0;random scratching without
i . 11 10 2 ;... and with pitch changes
</CsScore>

</CsoundSynthesizer>

CROSS SYNTHESIS

Working in the frequency domain makes it possible to combine or "cross" the spectra of two
sounds. As the Fourier transform of an analysis frame results in a frequency and an amplitude
value for each frequency "bin", there are many different ways of performing cross synthesis.
The most common methods are:

e Combine the amplitudes of sound A with the frequencies of sound B. This is the classical
phase vocoder approach. If the frequencies are not completely from sound B, but can be
scaled between A and B, the crossing is more flexible and adjustable to the sounds being
used. This is what pvsvoc does.

o Combine the frequencies of sound A with the amplitudes of sound B. Give more flexibility
by scaling the amplitudes between A and B: pvscross.

o Get the frequencies from sound A. Multiply the amplitudes of A and B. This can be
described as spectral filtering. pvsfilter gives a flexible portion of this filtering effect.

This is an example for phase vocoding. It is nice to have speech as sound A, and a rich sound,
like classical music, as sound B. Here the "fox" sample is being played at half speed and "sings"
through the music of sound B:

EXAMPLE 05104.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;example by joachim heintz
sSr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

;store the samples in function tables (buffers)

gifilA ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 1
gifilB ftgen 0, 6, 0, 1, "ClassGuit.wav", 0, 0, 1

;general values for the pvstanal opcode



giamp = 1 ;amplitude scaling

gipitch = 1 ;pitch scaling

gidet = 0 ;onset detection

giwrap = 1 ;loop reading

giskip = 0 ;start at the beginning

gifftsiz = 1024 ;fft size

giovlp = gifftsiz/8 ;overlap size

githresh = 0 ;threshold

instr 1

;read "fox.wav" in half speed and cross with classical guitar sample

fsigA pvstanal .5, giamp, gipitch, gifilA, gidet, giwrap, giskip,
gifftsiz, giovlp, githresh

fsigB pvstanal 1, giamp, gipitch, gifilB, gidet, giwrap, giskip,
gifftsiz, giovlp, githresh

fvoc pvsvoc fsigA, fsigB, 1, 1

aout pvsynth fvoc

aenv linen aout, .1, p3, .5

out aout

endin

</CsInstruments>

<CsScore>

i1e 11

</CsScore>

</CsoundSynthesizer>
The next example introduces pvscross

EXAMPLE 05105.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

;example by joachim heintz
sr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

;store the samples in function tables (buffers)
gifilA ftgen 0, 6, 0, 1, "BratscheMono.wav", 0, 0, 1
gifilB ftgen 0, 0, 0, 1, "fox.wav", 0, 0, 1

;general values for the pvstanal opcode

giamp = 1 ;amplitude scaling

gipitch = 1 ;pitch scaling

gidet = 0 ;onset detection

giwrap = 1 ;loop reading

giskip = @ ;start at the beginning

gifftsiz = 1024 ;fft size

giovlp = gifftsiz/8 ;overlap size

githresh = 0 ;threshold

instr 1

;cross viola with "fox.wav" in half speed

fsigA pvstanal 1, giamp, gipitch, gifilA, gidet, giwrap, giskip,
gifftsiz, giovlp, githresh

fsigB pvstanal .5, giamp, gipitch, gifilB, gidet, giwrap, giskip,
gifftsiz, giovlp, githresh

fcross pvscross fsigA, fsigB, 0, 1

aout pvsynth fcross

aenv linen aout, .1, p3, .5

out aout

endin

</CsInstruments>

<CsScore>

i1011

</CsScore>

</CsoundSynthesizer>

The last example shows spectral filtering via pvsfilter. The well-known "fox" (sound A) is now
filtered by the viola (sound B). Its resulting intensity depends on the amplitudes of sound B, and
if the amplitudes are strong enough, you hear a resonating effect:

EXAMPLE 05106.csd

<CsoundSynthesizer>
<CsOptions>



-odac

</CsOptions>
<CsInstruments>

;example by joachim heintz
sSr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

;store the samples in function tables (buffers)
gifilA ftgen 0, 6, 0, 1, "fox.wav", 0, 0, 1
gifilB ftgen 0, 0, 0, 1, "BratscheMono.wav", 0, 0, 1

;general values for the pvstanal opcode

giamp = 1 ;amplitude scaling

gipitch = 1 ;pitch scaling

gidet = 0 ;onset detection

giwrap = 1 ;loop reading

giskip = @ ;start at the beginning

gifftsiz = 1024 ;fft size

giovlp = gifftsiz/4 ;overlap size

githresh = @ ;threshold

instr 1

;filters "fox.wav" (half speed) by the spectrum of the viola (double speed)

fsigA pvstanal .5, giamp, gipitch, gifilA, gidet, giwrap, giskip,
gifftsiz, giovlp, githresh

fsigB pvstanal 2, 5, gipitch, gifilB, gidet, giwrap, giskip,
gifftsiz, giovlp, githresh

ffilt pvsfilter fsigA, fsigB, 1

aout pvsynth ffilt

aenv linen aout, .1, p3, .5

out aout

endin

</CsInstruments>

<CsScore>

i1011

</CsScore>

</CsoundSynthesizer>

There are much more ways of working with the pvs opcodes. Have a look at the Signal
Processing Il section of the Opcodes Overview to find some hints.

1. All soundfiles used in this manual are free and can be downloaded at www.csound-
tutorial.net™

2. For some cases it is good to have pvsadsyn as an alternative, which is using a bank of
oscillators for resynthesis.~
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36 RECORD AND PLAY SOUNDFILES

PLAYING SOUNDFILES FROM DISK - DISKIN2

The simplest way of playing a sound file from Csound is to use the diskin2 opcode. This opcode
reads audio directly from the hard drive location where it is stored, i.e. it does not pre-load the
sound file at initialisation time. This method of sound file playback is therefore good for playing
back very long, or parts of very long, sound files. It is perhaps less well suited to playing back
sound files where dense polyphony, multiple iterations and rapid random access to the file is
required. In these situations reading from a function table or buffer is preferable.

diskin2 has additional parameters for speed of playback, and interpolation.

EXAMPLE 06A01.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activate real-time audio output

</CsOptions>

<CsInstruments>
; example written by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1

instr 1 ; play audio from disk

kSpeed init 1 ; playback speed
iskip init 0 ; inskip into file (in seconds)
iLoop init 0 ; looping switch (©=off 1=on)
; read audio from disk using diskin2 opcode
al diskin2 "loop.wav", kSpeed, iSkip, iLoop
out al ; send audio to outputs

endin
</CsInstruments>
<CsScore>
i106
e
</CsScore>

</CsoundSynthesizer>

WRITING AUDIO TO DISK

The traditional method of rendering Csound's audio to disk is to specify a sound file as the audio
destination in the Csound command or under <CsOptions>, in fact before real-time performance
became a possibility this was the only way in which Csound was used. With this method, all audio
that is piped to the output using out, outs etc. will be written to this file. The number of channels
that the file will conatain will be determined by the number of channels specified in the orchestra
header using 'nchnls’. The disadvantage of this method is that we cannot simultaneously listen to
the audio in real-time.

EXAMPLE 06A02.csd
<CsoundSynthesizer>

<CsOptions>

; audio output destination is given as a sound file (wav format specified)
; this method is for deferred time performance,

; simultaneous real-time audio will not be possible

-oWriteToDiskl.wav -W

</CsOptions>

<CsInstruments>
; example written by Iain McCurdy

44100
32

sr
ksmps



1
1

nchnls
0dbfs

giSine ftgen 0, 0, 4096, 10, 1 ; a sine wave

instr 1 ; a simple tone generator
aEnv expon 0.2, p3, 0.001 ; a percussive envelope
asSig poscil aEnv, cpsmidinn(p4), giSine ; audio oscillator
out aSig ; send audio to output
endin

</CsInstruments>
<CsScore>

two chords
0 5 60
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/CsScore>

</CsoundSynthesizer>

WRITING AUDIO TO DISK WITH SIMULTANEOUS REAL-TIME
AUDIO OUTPUT - FOUT AND MONITOR

Recording audio output to disk whilst simultaneously monitoring in real-time is best achieved
through combining the opcodes monitor and fout. 'monitor' can be used to create an audio signal
that consists of a mix of all audio output from all instruments. This audio signal can then be
rendered to a sound file on disk using 'fout'. 'monitor' can read multi-channel outputs but its
number of outputs should correspond to the number of channels defined in the header using
'nchnls’. In this example it is reading just in mono. 'fout' can write audio in a number of formats
and bit depths and it can also write multi-channel sound files.

EXAMPLE 06A03.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activate real-time audio output

</CsOptions>

<CsInstruments>
;example written by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

giSine ftgen 0, 0, 4096, 10, 1 ; a sine wave
gaSig init 0; set initial value for global audio variable (silence)

instr 1 ; a simple tone generator

aEnv expon 0.2, p3, 0.001 ; percussive amplitude envelope
asig poscil aEnv, cpsmidinn(p4), giSine ; audio oscillator
out aSig
endin

instr 2 ; write to a file (always on in order to record everything)

aSig monitor ; read audio from output bus
fout "WriteToDisk2.wav", 4,aSig ; write audio to file (16bit mono)
endin
</CsInstruments>
<CsScore>

; activate recording instrument to encapsulate the entire performance

; two chords
i1 0 5 60
i10.1565
i10.25 67
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/CsScore>

</CsoundSynthesizer



37 RECORD AND PLAY BUFFERS

PLAYING AUDIO FROM RAM - FLOOPER2

Csound offers many opcodes for playing back sound files that have first been loaded into a
function table (and therefore are loaded into RAM). Some of these offer higher quality at the
expense of computation speed some are simpler and less fully featured.

One of the newer and easier to use opcodes for this task is flooper2. As its name might suggest
it is intended for the playback of files with looping. 'flooper2' can also apply a cross-fade between
the end and the beginning of the loop in order to smooth the transition where looping takes
place.

In the following example a sound file that has been loaded into a GENO1 function table is played
back using 'flooper2'. 'flooper2' also includes a parameter for modulating playback speed/pitch.
There is also the option of modulating the loop points at k-rate. In this example the entire file is
simply played and looped. You can replace the sound file with one of your own or you can
download the one used in the example from here:

Some notes about GENO1 and function table sizes:

When storing sound files in GENOT function tables we must ensure that we define a table of
sufficient size to store our sound file. Normally function table sizes should be powers of 2 (2, 4,
8, 16, 32 etc.). If we know the duration of our sound file we can derive the required table size by
multiplying this duration by the sample rate and then choosing the next power of 2 larger than
this. For example when the sampling rate is 44100, we will require 44100 table locations to store
1 second of audio; but 44100 is not a power of 2 so we must choose the next power of 2 larger
than this which is 65536. (Hint: you can discover a sound file's duration by using Csound's
'sndinfo" utility.)

There are some 'lazy' options however: if we underestimate the table size, when we then run
Csound it will warn us that this table size is too small and conveniently inform us via the terminal
what the minimum size required to store the entire file would be - we can then substitute this
value in our GENO1 table. We can also overestimate the table size in which case Csound won't
complain at all, but this is a rather inefficient approach.

If we give table size a value of zero we have what is referred to as 'deferred table size'. This
means that Csound will calculate the exact table size needed to store our sound file and use this
as the table size but this will probably not be a power of 2. Many of Csound's opcodes will work
quite happily with non-power of 2 function table sizes, but not all! It is a good idea to know how
to deal with power of 2 table sizes. We can also explicitly define non-power of 2 table sizes by
prefacing the table size with a minus sign '-".

All of the above discussion about required table sizes assumed that the sound file was mono, to
store a stereo sound file will naturally require twice the storage space, for example, 1 second of
stereo audio will require 88200 storage locations. GENO1 will indeed store stereo sound files and
many of Csound's opcodes will read from stereo GENO1 function tables, but again not all! We
must be prepared to split stereo sound files, either to two sound files on disk or into two
function tables using GENO1's 'channel' parameter (p8), depending on the opcodes we are using.

Storing audio in GENO1 tables as mono channels with non-deferred and power of 2 table sizes will
ensure maximum compatibility.

EXAMPLE 06B01.csd
<CsoundSynthesizer>
<CsOptions>
-odac ; activate real-time audio

</CsOptions>

<CsInstruments>
; example written by Iain McCurdy

sr = 44100



ksmps = 32
nchnls
0dbfs

nn
[y

1

; STORE AUDIO IN RAM USING GENO1 FUNCTION TABLE
giSoundFile ftgen 0, 0, 262144, 1, "loop.wav", 0, 0, O

instr 1 ; play audio from function table using flooper2 opcode

kAmp = 1 ; amplitude

kPitch = p4 ; pitch/speed

kLoopStart = [c] ; point where looping begins (in seconds)
kLoopEnd = nsamp(giSoundFile)/sr; loop end (end of file)
kCrossFade = 0] ; cross-fade time

; read audio from the function table using the flooper2 opcode

asSig flooper2 kAmp, kPitch, kLoopStart, kLoopEnd, kCrossFade, giSoundFile
out aSig ; send audio to output
endin
</CsInstruments>
<CsScore>
p4 = pitch

7

; (sound file duration is 4.224)
i1 0 [4.224*2] 1

i1 + [4.224*2] 0.5

i1+ [4.224%1] 2
e
<

/CsScore>

</CsoundSynthesizer>

CSOUND'S BUILT-IN RECORD-PLAY BUFFER - SNDLOOP

Csound has an opcode called sndloop which provides a simple method of recording some audio
into a buffer and then playing it back immediately. The duration of audio storage required is
defined when the opcode is initialized. In the following example two seconds is provided. Once
activated, as soon as two seconds of live audio has been recorded by 'sndloop’, it immediately
begins playing it back in a loop. 'sndloop’ allows us to modulate the speed/pitch of the played
back audio as well as providing the option of defining a crossfade time between the end and the
beginning of the loop. In the example pressing 'r' on the computer keyboard activates record
followed by looped playback, pressing 's' stops record or playback, pressing '+' increases the
speed and therefore the pitch of playback and pressing '-' decreases the speed/pitch of
playback. If playback speed is reduced below zero it enters the negative domain in which case
playback will be reversed.

You will need to have a microphone connected to your computer in order to use this example.

EXAMPLE 06B02.csd
<CsoundSynthesizer>

<CsOptions>
; real-time audio in and out are both activated
-iadc -odac
</CsOptions>

<CsInstruments>
;example written by Iain McCurdy

sr = 44100

ksmps = 32

nchnls = 1
instr 1

; PRINT INSTRUCTIONS
prints "Press 'r' to record, 's' to stop playback, "
prints "'+' to increase pitch, '-' to decrease pitch.\\n"
; SENSE KEYBOARD ACTIVITY
kKey sensekey; sense activity on the computer keyboard

aln inch 1 read audio from first input channel
kPitch init 1 initialize pitch parameter

iDur init 2 inititialize duration of loop parameter
iFade init 0.05 initialize crossfade time parameter

if kKey = 114 then ; if 'r' has been pressed...
kTrig = 1 ; set trigger to begin record-playback
elseif kKey = 115 then ; if 's' has been pressed...

kTrig = [¢] set trigger to turn off record-playback
elseif kKey = 43 then if '+' has been pressed...
kPitch = kPitch + 0.02 increment pitch parameter

elseif kKey = 95 then if '-' has been pressed



kPitch = kPitch - 0.02 ; decrement pitch parameter

endif ; end of conditional branches

; CREATE SNDLOOP INSTANCE

aOut, kRec sndloop aIn, kPitch, kTrig, iDur, iFade ; (kRec output is not used)

out alut ; send audio to output
endin
</CsInstruments>
<CsScore>
i1 0 3600 ; instr 1 plays for 1 hour
</CsScore>

</CsoundSynthesizer>

RECORDING TO AND PLAYBACK FROM A FUNCTION TABLE

Writing to and reading from buffers can also be achieved through the use of Csound's opcodes
for table reading and writing operations. Although the procedure is a little more complicated than
that required for 'sndloop' it is ultimately more flexible. In the next example separate
instruments are used for recording to the table and for playing back from the table. Another
instrument which runs constantly scans for activity on the computer keyboard and activates the
record or playback instruments accordingly. For writing to the table we will use the tablew
opcode and for reading from the table we will use the table opcode (if we were to modulate the
playback speed it would be better to use one of Csound's interpolating variations of 'table' such
as tablei or table3. Csound writes individual values to table locations, the exact table locations
being defined by an 'index’. For writing continuous audio to a table this index will need to be
continuously moving 1 location for every sample. This moving index (or 'pointer’) can be created
with an a-rate line or a phasor. The next example uses 'line’. When using Csound's table
operation opcodes we first need to create that table, either in the orchestra header or in the
score. The duration of the audio buffer can be calculated from the size of the table. In this
example the table is 2717 points long, that is 131072 points. The duration in seconds is this
number divided by the sample rate which in our example is 44100Hz. Therefore maximum
storage duration for this example is 131072/44100 which is around 2.9 seconds.

EXAMPLE 06B03.csd
<CsoundSynthesizer>

<CsOptions>

; real-time audio in and out are both activated
-iadc -odac -d -m0@

</CsOptions>

<CsInstruments>
; example written by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1

giBuffer ftgen 0, 0, 2717, 7, 0; table for audio data storage
maxalloc 2,1 ; allow only one instance of the recording instrument at a time!

instr 1 ; Sense keyboard activity. Trigger record or playback accordingly.
prints "Press 'r' to record, 'p' for playback.\\n"
iTableLen = ftlen(giBuffer) ; derive buffer function table length
idur = iTableLen / sr ; derive storage time in seconds
kKey sensekey ; sense activity on the computer keyboard
if kKey=114 then ; if ASCCI value of 114 ('r') is output
event "i", 2, 0, idur, iTableLen ; activate recording instrument (2)

endif

if kKey=112 then ; if ASCCI value of 112 ('p) is output
event "i", 3, 0, idur, iTableLen ; activate playback instrument

endif

endin

instr 2 ; record to buffer

iTableLen = p4 ; table/recording length in samples
; -- print progress information to terminal --
prints "recording"
printks ".", 0.25 ; print '.' every quarter of a second
krelease release ; sense when note is in final k-rate pass..
if krelease=1 then ; then
7

printks "\\ndone\\n", © print a message
endif
; -- write audio to table --

ain inch 1 ; read audio from live input channel 1



andx line 0,p3,iTableLen ; create an index for writing to table
tablew ain,andx,giBuffer ; write audio to function table
endin

instr 3 ; playback from buffer

iTableLen = p4 ; table/recording length in samples
; -- print progress information to terminal --

prints "playback"

printks ".", 0.25 ; print '.' every quarter of a second
krelease release ; sense when note is in final k-rate pass
if krelease=1 then ; then

printks "\\ndone\\n", 0 ;
endif; end of conditional branch
; -- read audio from table --

print a message

aNdx line 0, p3, iTableLen; create an index for reading from table
al table aNdx, giBuffer ; read audio to audio storage table
out al ; send audio to output
endin
</CsInstruments>
<CsScore>

i1 0 3600 ; Sense keyboard activity. Start recording - playback.
</CsScore>

</CsoundSynthesizer>

ENCAPSULATING RECORD AND PLAY BUFFER
FUNCTIONALITY TO A UDO

Recording and playing of buffers can also be encapsulated into a User Defined Opcode. For being
flexible in the size of the buffer, the tabw opcode will be used for writing audio data to a buffer.
tabw writes to a table of any size and does not need a power-of-two table size like tablew.

An empty table (buffer) of any size can be created with a negative number as size. A table for
recording 10 seconds of audio data can be created in this way:

giBuf1 ftgen 0, 0, -(10*sr), 2, ©

The used can decide whether he wants to assign a certain number to the table, or whether he
lets Csound do this job, calling the table via its variable, in this case giBufl. This is a UDO for
creating a mono buffer, and another UDO for creating a stereo buffer:

opcode BufCrt1l, i, io

ilen, inum xin

ift ftgen inum, O, -(ilen*sr), 2, 0
xout ift

endop

opcode BufCrt2, ii, io
ilen, inum xin

iftL ftgen inum, 0, -(ilen*sr), 2, ©

iftR ftgen inum, 0, -(ilen*sr), 2, ©
xout iftL, iftR

endop

This simplifies the procedure of creating a record/play buffer, because the user is just asked for
the length of the buffer. A number can be given, but by default Csound will assign this number.
This statement will create an empty stereo table for 5 seconds of recording:

iBufL, iBufR BufCrt2 5

A first, simple version of a UDO for recording will just write the incoming audio to sequential
locations of the table. This can be done by setting the ksmps value to 1 inside this UDO
(setksmps 1), so that each audio sample has its own discrete k-value. In this way the write index
for the table can be assigned via the statement andx=kndx, and increased by one for the next
k-cycle. An additional k-input turns recording on and of:

opcode BufRecl, 0, aik
ain, ift, krec xin
setksmps 1

if krec == 1 then ;record as long as krec=1
kndx init [¢]
andx = kndx
tabw ain, andx, ift
kndx = kndx+1
endif

endop



The reading procedure is simple, too. Actually the same code can be used; it is sufficient just to
replace the opcode for writing (tabw) with the opcode for reading (tab):

opcode BufPlayl, a, ik
ift, kplay xin
setksmps 1
if kplay == 1 then ;play as long as kplay=1
0

kndx init

andx = kndx

aout tab andx, ift
kndx = kndx+1
endif

endop

So - let's use these first simple UDOs in a Csound instrument. Press the "r" key as long as you
want to record, and the "p" key for playing back. Note that you must disable the key repeats on
your computer keyboard for this example (in QuteCsound, disable "Allow key repeats" in
Configuration -> General).

EXAMPLE 06B04.csd

<CsoundSynthesizer>

<CsOptions>

-i adc -o dac -d -m@

</CsOptions>

<CsInstruments>

;example written by Joachim Heintz
sr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

opcode BufCrt1l, i, io
ilen, inum xin
ift ftgen inum, O, -(ilen*sr), 2, 0
xout ift
endop

opcode BufRecl, 0, aik
ain, ift, krec xin
setksmps 1

imaxindx = ftlen(ift)-1 ;max index to write
knew changed krec
if krec == 1 then ;record as long as krec=1

if knew == 1 then ;reset index if restarted
kndx = ¢}

endif
kndx = (kndx > imaxindx ? imaxindx : kndx)
andx = kndx

tabw ain, andx, ift

kndx = kndx+1
endif

endop

opcode BufPlayl, a, ik
ift, kplay xin

setksmps 1
imaxindx = ftlen(ift)-1 ;max index to read
knew changed kplay
if kplay == 1 then ;play as long as kplay=1
if knew == 1 then ;reset index if restarted
kndx = [}
endif
kndx = (kndx > imaxindx ? imaxindx : kndx)
andx = kndx
aout tab andx, ift
kndx = kndx+1
endif
xout aout
endop

opcode KeyStay, k, kkk
,returns 1 as long as a certain key is pressed

key, k0, kascii xin ;ascii code of the key (e.g. 32 for space)
kprev init @ ;previous key value
kout = (key == kascii || (key == -1 && kprev == kascii) ? 1 : 0)
kprev = (key > 0 ? key : kprev)
kprev = (kprev == key && kO == 0 ? 0 : kprev)
xout kout
endop

opcode KeyStay2, kk, kk
;combines two KeyStay UDO's (this way is necessary



;because just one sensekey opcode is possible in an orchestra)
kascil, kasci2 xin ;two ascii codes as input
key, kO sensekey

kout1l KeyStay key, k0, kascil
kout2 KeyStay key, ko, kasci2
xout koutl, kout2
endop
instr 1
ain inch 1 ;audio input on channel 1
iBuf BufCrti 3 ;buffer for 3 seconds of recording

kRec, kPlay KeyStay2 114, 112 ;define keys for record and play
BufRecl ain, iBuf, kRec ;record if kRec=1

aout BufPlayl iBuf, kPlay ;play if kPlay=1
out aout ;send out

endin

</CsInstruments>
<CsScore>

i1 0 1000
</CsScore>
</CsoundSynthesizer>

Let's realize now a more extended and easy to operate version of these two UDO's for
recording and playing a buffer. The wishes of a user might be the following:

Recording:

e allow recording not just from the beginning of the buffer, but also from any arbitrary
starting point kstart
e allow circular recording (wrap around) if the end of the buffer has been reached: kwrap=1

Playing:

play back with different speed kspeed (negaitve speed means playing backwards)
start playback at any point of the buffer kstart

end playback at any point of the buffer kend

allow certain modes of wraparound kwrap while playing:

e o o o

kwrap=0 stops at the defined end point of the buffer
kwrap=1 repeats playback between defined end and start points
kwrap=2 starts at a the defined starting point but wraps between end point and
beginning of the buffer
o kwrap=3 wraps between kstart and the end of the table

The following example provides versions of BufRec and BufPlay which do this job. We will use the
table3 opcode instead of the simple tab or table opcodes in this case, because we want to
translate any number of samples in the table to any number of output samples by different
speed values:
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For higher or lower speed values than the original record speed, interpolation must be used in
between certain sample values if the original shape of the wave is to be reproduced as
accurately as possible. This job is performed with high quality by table3 which employs cubic
interpolation.

In a typical application of recording and playing buffer buffers, the ability to interact with the
process will be paramount. We can benefit from having interactive access to the following:

e starting and stopping record

adjusting the start and end points of recording

use or prevent wraparound while recording

starting and stopping playback

adjusting the start and end points of playback

adjusting wraparound in playback at one of the specified modes (1 - 4)
applying volume at playback

These interactions could be carried out via widgets, MIDI, OSC or something else. As we want to
provide examples which can be used with any Csound frontend here, we are restricted to
triggering the record and play events by hitting the space bar of the computer keyboard. (See
the QuteCsound version of this example for a more interactive version.)

EXAMPLE 06B05.csd

<CsoundSynthesizer>

<CsOptions>

-i adc -o dac -d

</CsOptions>

<CsInstruments>

;example written by joachim heintz
sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1



opcode BufCrt2, ii, io ;creates a stereo buffer
ilen, inum xin ;ilen = length of the buffer (table) in seconds

iftL ftgen inum, 0, -(ilen*sr), 2, ©
iftR ftgen inum, O, -(ilen*sr), 2, 0
xout iftL, iftR
endop

opcode BufRecl, k, aikkkk ;records to a buffer
ain, ift, krec, kstart, kend, kwrap xin
setksmps 1
kendsmps = kend*sr ;end point in samples
kendsmps = (kendsmps == 0 || kendsmps > ftlen(ift) ? ftlen(ift) : kendsmps)
kfinished = ©
knew changed krec ;1 if record just started
if krec == 1 then

if knew == 1 then
kndx = kstart * sr - 1 ;first index to write
endif
if kndx >= kendsmps-1 && kwrap == 1 then
kndx = -1
endif
if kndx < kendsmps-1 then
kndx = kndx + 1
andx = kndx
tabw ain, andx, ift
else
kfinished = 1
endif
endif
xout kfinished
endop

opcode BufRec2, k, aaiikkkk ;records to a stereo buffer
ainL, ainR, iftL, iftR, krec, kstart, kend, kwrap xin

kfin BufRec1 ainL, iftL, krec, kstart, kend, kwrap
kfin BufRec1 ainR, iftR, krec, kstart, kend, kwrap
xout kfin
endop

opcode BufPlayl, ak, ikkkkkk
ift, kplay, kspeed, kvol, kstart, kend, kwrap xin
;kstart = begin of playing the buffer in seconds
;kend = end of playing in seconds. 0 means the end of the table
;kwrap = 0: no wrapping. stops at kend (positive speed) or kstart
; (negative speed).this makes just sense if the direction does not
;  change and you just want to play the table once
;kwrap = 1: wraps between kstart and kend
;kwrap = 2: wraps between 0 and kend
;kwrap = 3: wraps between kstart and end of table
; CALCULATE BASIC VALUES
kfin init ©

iftlen = ftlen(ift)/sr ;ftlength in seconds

kend = (kend == 0 ? iftlen : kend) ;kend=0 means end of table
kstartol = kstart/iftlen ;start in 0-1 range

kendd1l = kend/iftlen ;end in 0-1 range

kfgbas = (1/iftlen) * kspeed ;basic phasor frequency

;DIFFERENT BEHAVIOUR DEPENDING ON WRAP:
if kplay == 1 && kfin == 0 then
;1. STOP AT START- OR ENDPOINT IF NO WRAPPING REQUIRED (kwrap=0)
if kwrap == 0 then
; -- phasor freq so that 0-1 values match distance start-end
kfqrel = kfgbas / (kenddl-kstart01l)
andxrel phasor kfqrel ;index 0-1 for distance start-end
; -- final index for reading the table (0-1)
andx = andxrel * (kend@l-kstart0l) + (kstart0l)
kfirst init 1 ;don't check condition below at the first k-cycle (always true)
kndx downsamp andx
kprevndx init ©
;end of table check:
;for positive speed, check if this index is lower than the previous one
if kfirst == 0 && kspeed > 0 && kndx < kprevndx then
kfin = 1
;for negative speed, check if this index is higher than the previous one
else

kprevndx = (kprevndx == kstart0l ? kend®l1l : kprevndx)
if kfirst == 0 && kspeed < 0 && kndx > kprevndx then
kfin = 1
endif
kfirst = 0 ;end of first cycle in wrap = 0
endif

;sound out if end of table has not yet reached
asig table3 andx, ift, 1

kprevndx = kndx ;next previous is this index
;2. WRAP BETWEEN START AND END (kwrap=1)
elseif kwrap == 1 then

kfgrel = kfgbas / (kend®l-kstart@l) ;same as for kwarp=0



andxrel phasor kfqrel
andx = andxrel * (kend0l-kstart0l) + (kstartOl)
asig table3 andx, ift, 1 ;sound out
;3. START AT kstart BUT WRAP BETWEEN © AND END (kwrap=2)
elseif kwrap == 2 then
kw2first init 1
if kw2first == 1 then ;at first k-cycle:
reinit wrap3phs ;reinitialize for getting the correct start phase
kw2first = 0
endif
kfqrel = kfgbas / kend@1 ;phasor freq so that 0-1 values match distance start-
end
wrap3phs:
andxrel phasor kfqrel, i(kstart@l) ;index 0-1 for distance start-end
rireturn ;end of reinitialization
andx = andxrel * kendol ;final index for reading the table
asig table3 andx, ift, 1 ;sound out
;4. WRAP BETWEEN kstart AND END OF TABLE(kwrap=3)

elseif kwrap == 3 then
kfqrel = kfgbas / (1-kstart@1) ;phasor freq so that 0-1 values match distance
start-end
andxrel phasor kfqrel ;index 0-1 for distance start-end
andx = andxrel * (1-kstart0l) + kstart@l ;final index for reading the table
asig table3 andx, ift, 1

endif
else ;if either not started or finished at wrap=0
asig = 0 ;don't produce any sound
endif

xout asig*kvol, kfin
endop

opcode BufPlay2, aak, iikkkkkk ;plays a stereo buffer
iftL, iftR, kplay, kspeed, kvol, kstart, kend, kwrap xin

aL, kfin BufPlay1l iftL, kplay, kspeed, kvol, kstart, kend, kwrap
aR, kfin BufPlayl iftR, kplay, kspeed, kvol, kstart, kend, kwrap
xout aL, aR, kfin
endop

opcode In2, aa, kk ;stereo audio input
kchn1, kchn2 xin

aini inch kchni
ain2 inch kchn2
xout ainl, ain2
endop

opcode Key, kk, k
;returns '1' just in the k-cycle a certain key has been pressed (kdown)
; or released (kup)

kascii xin ;ascii code of the key (e.g. 32 for space)
key, kO sensekey
knew changed key
kdown = (key == kascii && knew == 1 && kO == 1 ? 1 0)
kup = (key == kascii && knew == 1 && kO == 0 ? 1 0)
xout kdown, kup
endop
instr 1
giftL,giftR BufCrt2 3 ;creates a stereo buffer for 3 seconds
gainL,gainR In2 1,2 ;read input channels 1 and 2 and write as global audio
prints "PLEASE PRESS THE SPACE BAR ONCE AND GIVE AUDIO INPUT
ON CHANNELS 1 AND 2.\n"
prints "AUDIO WILL BE RECORDED AND THEN AUTOMATICALLY PLAYED
BACK IN SEVERAL MANNERS.\n"
krec, ko Key 32
if krec == 1 then
event "i", 2, 0, 10
endif
endin
instr 2
; -- records the whole buffer and returns 1 at the end
kfin BufRec2 gainL, gainR, giftL, giftR, 1, 0, 0, ©
if kfin == 0 then
printks "Recording!\n", 1
endif
if kfin == 1 then
ispeed random -2, 2
istart random 0, 1
iend random 2, 3
iwrap random 0, 1.999
iwrap = int(iwrap)

printks "Playing back with speed = %.3f, start = %.3f, end = %.3f,
wrap = %d\n", p3, ispeed, istart, iend, iwrap
aL,aR, kf BufPlay2 giftL, giftR, 1, ispeed, 1, istart, iend, iwrap
if kf == 0 then
printks "Playing!\n", 1



endif

endif

krel release

if kfin == 1 && kf == 1 || krel == 1 then
printks "PRESS SPACE BAR AGAIN!\n", p3
turnoff

endif
outs aL, aR

endin

</CsInstruments>
<CsScore>

i1 0 1000

e

</CsScore>
</CsoundSynthesizer>
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38 RECEIVING EVENTS BY MIDIIN

Csound provides a variety of opcodes, such as cpsmidi, ampmidi and ctrl7 which allow for
transparent interpretation of incoming midi data. These opcodes allow us to read in mid
information without us having to worry about parsing status bytes and so on. Occasionally when
we are involved in more complex midi interaction, it might be advantageous for us to scan all
raw midi information that is coming into Csound. The midiin opcode allows us to do this.

In the next example a simple midi monitor is constructed. Incoming midi events are printed to
the terminal with some formatting to make them readable. We can disable Csound's default
instrument triggering mechanism (which in this example we don't want) by giving the line:

massign 0,0
just after the header statement (sometimes referred to as instrument 0).

For this example to work you will need to ensure that you have activated live midi input within
Csound, either by using the -M flag or from within the QuteCsound configuration menu, and that
you have a midi keyboard or controller connected. You may also want to include the -m0 flag
which will disable some of Csound's additional messaging output and therefore allow our midi
printout to be presented more clearly.

The status byte tells us what sort of midi information has been received. For example, a value
of 144 tells us that a midi note event has been received, a value of 176 tells us that a midi
controller event has been received, a value of 224 tells us that pitch bend has been received and
so on.

The meaning of the two data bytes depends on what sort of status byte has been received. For
example if a midi note event has been received then data byte 1 gives us the note velocity and
data byte 2 gives us the note number, if a midi controller event has been received then data
byte 1 gives us the controller number and data byte 2 gives us the controller value.

EXAMPLE 07A01.csd
<CsoundSynthesizer>

<CsOptions>

-Ma -mo

; activates all midi devices, suppress note printings
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

; no audio so 'sr' or 'nchnls' aren't relevant
ksmps = 32

; using massign with these arguments disables default instrument triggering
massign 0,0

instr 1
kstatus, kchan, kdatal, kdata2 midiin ;read in midi
ktrigger changed kstatus, kchan, kdatal, kdata2 ;trigger if midi data changes
if ktrigger=1&&kstatus!=0 then ;if status byte is non-zero...

; -- print midi data to the terminal with formatting --
printks "status:%d%tchannel:%d%tdatal:%d%tdata2:%d%n"\
,0,kstatus, kchan, kdatail, kdata2
endif
endin

</CsInstruments>

<CsScore>

i1 0 3600 ; instr 1 plays for 1 hour

</CsScore>

</CsoundSynthesizer>

The principle advantage of the midiin opcode is that, unlike opcodes such as cpsmidi, ampmidi

and ctrl7 which only receive specific midi data types on a specific channel, midiin 'listens' to all
incoming data including system exclusive. In situations where elaborate Csound instrument



triggering mappings that are beyond the default triggering mechanism's capabilities, are required
then the use for midiin might be beneficial.



39 TRIGGERING INSTRUMENT
INSTANCES

CSOUND'S DEFAULT SYSTEM OF INSTRUMENT TRIGGERING
VIA MIDI

Csound has a default system for instrument triggering via midi. Provided a midi keyboard has
been connected and the appropriate commmand line flags for midi input have been set (see
configuring midi for further information) or the appropriate settings have been made in
QuteCsound's configuration menu, then midi notes received on midi channel 1 will trigger
instrument 1, notes on channel 2 will trigger instrument 2 and so on. Instruments will turn on and
off in sympathy with notes being pressed and released on the midi keyboard and Csound will
correctly unravel polyphonic layering and turn on and off only the correct layer of the same
instrument begin played. Midi activated notes can be thought of as 'held' notes, similar to notes
activated in the score with a negative duration (p3). Midi activated notes will sustain indefinitely
as long as the performance time will allow until a corresponding note off has been received - this
is unless this infinite p3 duration is overwritten within the instrument itself by p3 begin explicitly
defined.

The following example confirms this default mapping of midi channels to instruments. You will
need a midi keyboard that allows you to change the midi channel on which it is transmmitting.
Besides a written confirmation to the console of which instrument is begin triggered, there is an
audible confirmation in that instrument 1 plays single pulses, instrument 2 plays sets of two
pulses and instrument 3 plays sets of three pulses. The example does not go beyond three
instruments. If notes are received on midi channel 4 and above, because corresonding
instruments do not exist, notes on any of these channels will be directed to instrument 1.

EXAMPLE 07B01.csd
<CsoundSynthesizer>

<CsOptions>

-Ma -odac -m@

;activates all midi devices, real time sound output, and suppress note printings
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gisine ftgen 0,0,2/12,10,1

instr 1 ; 1 impulse (midi channel 1)
prints "instrument/midi channel: %d%n",p1
reset:

timout O, 1, impulse
reinit reset

print instrument number to terminal
label 'reset'

jump to 'impulse' for 1 second
reninitialize pass from 'reset'

impulse: label 'impulse'
aenv expon 1, 0.3, 0.0001 a short percussive envelope
aSig poscil aenv, 500, gisine audio oscillator
out aSig audio to output
endin

instr 2 ; 2 impulses (midi channel 2)
prints "instrument/midi channel: %d%n", p1l
reset:

timout O, 1, impulse
reinit reset

impulse:
aenv expon 1, 0.3, 0.0001
asSig poscil aenv, 500, gisine
a2 delay aSig, 0.15 ; short delay adds another impulse
out aSig+a2 ; mix two impulses at output
endin

instr 3 ; 3 impulses (midi channel 3)



prints "instrument/midi channel: %d%n",p1l
reset:

timout ©, 1, impulse

reinit reset

impulse:

aenv expon 1, 0.3, 0.0001

asSig poscil aenv, 500, gisine

a2 delay aSig, 0.15 ; delay adds a 2nd impulse

a3 delay a2, 0.15 ; delay adds a 3rd impulse

out aSig+a2+a3 ; mix the three impulses at output

endin

</CsInstruments>

<CsScore>

f 0 300

e

</CsScore>

<CsoundSynthesizer>

USING MASSIGN TO MAP MIDI CHANNELS TO
INSTRUMENTS

We can use the massign opcode, which is used just after the header statement, to explicitly map
midi channels to specific instruments and thereby overrule Csound's default mappings. massign
takes two input arguments, the first defines the midi channel to be redirected and the second
stipulates which instrument it should be directed to. The following example is identical to the
previous one except that the massign statements near the top of the orchestra jumble up the
default mappings. Midi notes on channel 1 will be mapped to instrument 3, notes on channel 2 to
instrument 1 and notes on channel 3 to instrument 2. Undefined channel mappings will be
mapped according to the default arrangement and once again midi notes on channels for which
an instrument does not exist will be mapped to instrument 1.

EXAMPLE 07B02.csd
<CsoundSynthesizer>

<CsOptions>

-Ma -odac -m@

; activate all midi devices, real time sound output, and suppress note printing
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gisine ftgen 0,0,2/12,10,1

massign 1,3 ; channel 1 notes directed to instr 3
massign 2,1 ; channel 2 notes directed to instr 1
massign 3,2 ; channel 3 notes directed to instr 2

instr 1 ; 1 impulse (midi channel 1)
iChn midichn ; discern what midi channel
prints "channel:%d%tinstrument: %d%n",iChn, p1 print instr num and midi channel
reset: label 'reset'
timout O, 1, impulse jump to 'impulse' for 1 second
reinit reset reninitialize pass from 'reset'

impulse: label 'impulse'
aenv expon 1, 0.3, 0.0001 a short percussive envelope
aSig poscil aenv, 500, gisine audio oscillator
out asSig send audio to output
endin

instr 2 ; 2 impulses (midi channel 2)
iChn midichn
prints "channel:%d%tinstrument: %d%n",iChn,p1
reset:
timout O, 1, impulse
reinit reset

impulse:

aenv expon 1, 0.3, 0.0001

asSig poscil aenv, 500, gisine

a2 delay aSig, 0.15 ; delay generates a 2nd impulse
out asSig+a2 ; mix two impulses at the output

endin



instr 3 ; 3 impulses (midi channel 3)
iChn midichn
prints "channel:%d%tinstrument: %d%n",iChn, p1
reset:
timout O, 1, impulse
reinit reset

impulse:

aenv expon 1, 0.3, 0.0001

aSig poscil aenv, 500, gisine

a2 delay aSig, 0.15 ; delay generates a 2nd impulse

a3 delay a2, 0.15 ; delay generates a 3rd impulse

out aSig+a2+a3 ; mix three impulses at output

endin

</CsInstruments>

<CsScore>

f 0 300

e

</CsScore>

<CsoundSynthesizer>

massign also has a couple of additional functions that may come in useful. A channel number of
zero is interpreted as meaning 'any'. The following instruction will map notes on any and all
channels to instrument 1.

massign 0,1

An instrument number of zero is interpreted as meaning 'none’ so the following instruction will
instruct Csound to ignore triggering for notes received on any and all channels.

massign 0,0

The above feature is useful when we want to scan midi data from an already active instrument
using the midiin opcode, as we did in EXAMPLE 0701.csd.

USING MULTIPLE TRIGGERING

Csound's event/event_i opcode (see the Triggering Instrument Events chapter) makes it possible

to trigger any other instrument from a midi-triggered one. As you can assign a fractional number
to an instrument, you can distinguish the single instances from each other. This is an example
for using fractional instrument numbers.

EXAMPLE 07B03.csd

<CsoundSynthesizer>

<CsOptions>

-Ma

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz, using code of Victor Lazzarini
sr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

massign 0, 1 ;assign all incoming midi to instr 1

instr 1 ;global midi instrument, calling instr 2.cc.nnn (c=channel, n=note

number)
inote notnum ;get midi note number
ichn midichn ;get midi channel
instrnum = 2 + ichn/100 + inote/100000 ;make fractional instr number
; -- call with indefinite duration
event_i "i", instrnum, O, -1, ichn, inote
kend release ;get a "1" if instrument is turned off
if kend == 1 then
event "i", -instrnum, O, 1 ;then turn this instance off
endif
endin
instr 2
ichn = int(frac(p1)*100)
inote = round(frac(frac(pl)*160)*1000)
prints "instr %f: ichn = %f, inote = %f%n", p1, ichn, inote
printks "instr %f playing!%n", 1, p1
endin

</CsInstruments>



<CsScore>

f 0 36000

e

</CsScore>
</CsoundSynthesizer>

This example merely demonstrates a technique for passing information about MIDI channel and
note number from the directly triggered instrument to a sub-instrument. A practical application
for this would be in creating keygroups - triggering different instruments by playing in different

regions of the keyboard. In this case you could change just the line:

instrnum = 2 + ichn/100 + inote/100000
to this:
if inote < 48 then
instrnum = 2
elseif inote < 72 then
instrnum = 3
else
instrnum = 4
endif
instrnum = instrnum + ichn/100 + inote/100000

In this case you will call for any key below C3 instrument 2, for any key between C3 and B4
instrument 3, and for any higher key instrument 4.

By this multiple triggering you are also able to trigger more than one instrument at the same
time (which is not possible by the massign opcode). This is an example using a User Defined
Opcode (see the UDO chapter of this manual):

EXAMPLE 07B04.csd

<CsoundSynthesizer>

<CsOptions>

-Ma

</CsOptions>

<CsInstruments>

;Example by Joachim Heintz, using code of Victor Lazzarini
sr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

massign 0, 1 ;assign all incoming midi to instr 1
giInstrs ftgen e, 6, -5, -2, 2, 3, 4, 10, 100 ;instruments to be triggered

opcode MidiTrig, 0, io
;triggers the first inum instruments in the function table ifn by a midi event,
; with fractional numbers containing channel and note number information

; -- if inum=0 or not given, all instrument numbers in ifn are triggeredifn, inum

xin

inum = (inum == 0 ? ftlen(ifn) : inum)

inote notnum

ichn midichn

iturnon = [¢]

turnon:

iinstrnum tab_i iturnon, ifn

if iinstrnum > 0 then

ifracnum = iinstrnum + ichn/100 + inote/100000
event_i "i", ifracnum, 0, -1

endif
loop_1t iturnon, 1, inum, turnon

kend release

if kend == 1 then

kturnoff = ¢}

turnoff:

kinstrnum tab kturnoff, ifn

if kinstrnum > 0 then

kfracnum = kinstrnum + ichn/100 + inote/100000
event "i", -kfracnum, 0, 1
loop_1t kturnoff, 1, inum, turnoff

endif

endif

endop

instr 1 ;global midi instrument

; -- trigger the first two instruments in the gilInstrs table
MidiTrig gilInstrs, 2

endin



instr 2
ichn =
inote =
prints
printks
endin

instr 3

ichn =

inote =
prints
printks

endin

</CsInstruments>
<CsScore>

f 0 36000

e

</CsScore>

int(frac(p1)*100)

round(frac(frac(pl)*100)*1000)

"instr %f:

ichn = %f,

inote

"instr %f playing!%n", 1, p1l

int(frac(p1)*100)

%fun",

round(frac(frac(pl)*100)*1000)

"instr %f:

</CsoundSynthesizer>

ichn = %f,
"instr %f playing!%n",

inote
1, p1

%f%n",

p1,

p1,

ichn,

ichn,

inote

inote



40 - WORKING WITH CONTROLLERS

SCANNING MIDI CONTINUOUS CONTROLLERS

The most useful opcode for reading in midi continuous controllers is ctrl7. 'ctrl7's input arguments
allow us to specify midi channel and controller number of the controller to be scanned in addition
to giving us the option to rescale the received midi values between a new minimum and
maximum value as defined by the 3rd and 4th input arguments. Further possibilities for
modifying the data output are provided by the 5th (optional) argument which is used to point to
a function table that reshapes the controllers output response to something other than linear.
This can be useful when working with parameters which are normally expressed on a logarithmic
scale such as frequency.

The following example scans midi controller 1 on channel 1 and prints values received to the
console. The minimum and maximum values are given as 0 and 127 therefore they are not
rescaled at all. (Controller 1is also the modulation wheel on a midi keyboard.)

EXAMPLE 07C01.csd
<CsoundSynthesizer>
<CsOptions>
-Ma -odac
; activate all MIDI devices
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

; 'sr' and 'nchnls' are irrelevant so are omitted

ksmps = 32
instr 1
kCtrl ctrl7 1,1,0,127 ; read in controller 1 on channel 1
kTrigger changed kCtrl ; if 'kCtrl' changes generate a trigger ('bang')

if kTrigger=1 then
; Print kCtrl to console with formatting, but only when its value changes.
printks "Controller Value: %d%n", 0, kCtrl
endif
endin

</CsInstruments>

<CsScore>
i1 0 3600
e

</CsScore>

<CsoundSynthesizer>

There are also 14 bit and 21 bit versions of ctr/7 (ctrl14 and ctrl21) which improve upon the 7 bit
resolution of 'ctrl7' but hardware that outputs 14 or 21 bit controller information is rare so these
opcodes are seldom used.

SCANNING PITCH BEND AND AFTERTOUCH

We can scan pitch bend and aftertouch in a similar way using the opcodes pchbend and aftouch.
Once again we can specify minimum and maximum values with which to re-range the output. In
the case of 'pchbend' we specify the value it outputs when the pitch bend wheel is at rest
followed by a value which defines the entire range from when it is pulled to its minimum to when
it is pushed to its maximum. In this example playing a key on the keyboard will play a note, the
pitch of which can be bent up or down two semitones using the pitch bend wheel. Aftertouch can
be used to modify the amplitude of the note while it is playing. Pitch bend and aftertouch data is
also printed at the terminal whenever it changes. One thing to bear in mind is that for 'pchbend
to function the Csound instrument that contains it needs to have been activated by a MIDI
event: you will need to play a midi note on your keyboard and then move the pitch bend wheel.

EXAMPLE 07C02.csd



<CsoundSynthesizer>

<CsOptions>
-odac -Ma
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

Sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

gisine ftgen ©0,0,2710,10,1 ; a sine wave

instr 1
; -- pitch bend --
kPchBnd pchbend 0,4
kTrigl changed kPchBnd
if kTrigl=1 then

read in pitch bend (range -2 to 2)
if 'kPchBnd' changes generate a trigger

printks "Pitch Bend:%f%n",0,kPchBnd ; print kPchBnd to console when it changes
endif
; -- aftertouch --

kAfttch aftouch 0,0.9
kTrig2 changed kAfttch
if kTrig2=1 then
printks "Aftertouch:%d%n",0,kAfttch ; print kAfttch to console when it changes
endif

read in aftertouch (range 0 to 0.9)
if 'kAfttch' changes generate a trigger

; -- create a sound --
iNum notnum ; read in MIDI note number
; MIDI note number + pitch bend are converted to cycles per seconds
asSig poscil 0.1, cpsmidinn(iNum+kPchBnd), giSine
out asSig ; audio to output
endin

</CsInstruments>

<CsScore>
f 0 300

e
</CsScore>

<CsoundSynthesizer>

INITIALIZING MIDI CONTROLLERS

It may be useful to be able to define the beginning value of a midi controller that will be used in
an orchestra - that is, the value it will adopt until its corresponding hardware control has been
moved. Until a controller has been moved its value in Csound defaults to its minimum setting
unless additional initialization has been carried out. It is important to be aware that midi
controllers only send out information when they are moved, when lying idle they send out no
information. As an example, if we imagine we have an Csound instrument in which the output
volume is controlled by a midi controller it might prove to be slightly frustrating that each time
the orchestra is launched, this instrument will remain silent until the volume control is moved.
This frustration might become greater when many midi controllers are begin utilized. It would be
more useful to be able to define the starting value for each of these controllers. The initc7
opcode allows us to define the starting value of a midi controller until its hardware control has
been moved. If initc7' is placed within the instrument itself it will be re-initialized each time the
instrument is called, if it is placed in instrument O (just after the header statements) then it will
only be initialized when the orchestra is first launched. The latter case is probably most useful.

In the following example a simple synthesizer is implemented. Midi controller 1 controls the
output volume of this instrument but the 'initc7' statement near the top of the orchestra
ensures that this control does not default to its minimum setting. The arguments that 'initc7'
takes are for midi channel, controller number and initial value. Initial value is defined within the
range 0-1, therefore a value of 1 set this controller to its maximum value (midi value 127), and a
value of 0.5 sets it to its halfway value (midi value 64) and so on.

Additionally this example uses the cpsmidi opcode to scan in midi pitch and the ampmidi opcode
to scan in note velocity.

EXAMPLE 07C03.csd



<CsoundSynthesizer>

<CsOptions>

-Ma -odac

; activate all midi inputs and real-time audio output
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

sSr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
giSine ftgen 0,0,2712,10,1 ; a sine wave
initc7 1,1,1 ; initialize CC 1 on chan. 1 to its max level
instr 1
iCps cpsmidi ; read in midi pitch in cycles-per-second
iAmp ampmidi 1 ; read in note velocity - re-range to be from 0 to 1

kvol ctrl7 1,1,0,1 ; read in CC 1, chan. 1. Re-range to be from 0 to 1
aSig poscil iAmp*kVol, iCps, giSine ; an audio oscillator
out asSig ; send audio to output
endin

</CsInstruments>

<CsScore>
f 0 3600

e
</CsScore>

<CsoundSynthesizer>

You will maybe hear that this instrument produces 'clicks' as notes begin and end. To find out
how to prevent this please see the section on envelopes with release sensing in the chapter

Sound Modification: Envelopes.

SMOOTHING 7-BIT QUANTIZATION IN MIDI CONTROLLERS

A problem we encounter with 7 bit midi controllers is the poor resolution that they offer us. 7 bit
means that we have 2 to the power of 7 possible values; therefore 128 possible values, which is
rather inadequate for defining the frequency of an oscillator over a number of octaves, the
cutoff frequency of a filter or a volume control. We quickly become aware of the parameter
that is being controlled moving up in steps - not so much of a 'continuous' control. We may also
experience clicking artefacts, sometimes called 'zipper noise', as the value changes. There are
some things we can do to address this problem. We can filter the controller signal within Csound
so that the sudden changes that occur between steps along the controller's travel are smoothed
using additional interpolating values - we must be careful not to smooth excessively otherwise
the response of the controller will become sluggish. Any k-rate compatible lowpass filter can be
used for this task but the portk opcode is particularly useful as it allows us to define the amount
of smoothing as a time taken to glide to half the required value rather than having to specify a
cutoff frequency. Additionally this 'half time' value can be varied as a k-rate value which
provides an advantage availed of in the following example.

This example takes the simple synthesizer of the previous example as its starting point. The
volume control which is controlled by midi controller 1 on channel 1 is passed through a 'portk’
filter. The 'half time' for 'portk' ramps quickly up to its required value of 0.01 through the use of
a linseg statement in the previous line. This is done so that when a new note begins the volume
control jumps immediately to its required value rather than gliding up from zero on account of
the effect of the 'portk’ filter. Try this example with the 'portk’ half time defined as a constant
to hear the difference. To further smooth the volume control, it is converted to an a-rate
variable through the use of the interp opcode which, as well as performing this conversion,
interpolates values in the gaps between k-cycles.

EXAMPLE 07C04.csd

<CsoundSynthesizer>
<CsOptions>

-Ma -odac

</CsOptions>
<CsInstruments>

;Example by Iain McCurdy



initialize CC 1 to its max.

level

read in midi pitch in cycles-per-second
read in note velocity - re-range 0 to 1

read in CC 1,

chan.

1. Re-range from 0 to 1

create a value that quickly ramps up to 0.01

create a filtered version of kvol
create an a-rate version of kVvol

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
giSine ftgen 0,0,27A12,10,1
initc7 1,1,1 ;
instr 1
iCps cpsmidi
iAmp ampmidi 1 ;
kvol ctrl7 1,1,0,1
kPortTime linseg ©0,0.001,0.01 ;
kvol portk kvol, kPortTime ;
avol interp kvol ;
asSig poscil iAmp*aVol, iCps,giSine
out asig
endin
</CsInstruments>
<CsScore>
f 0 300
e
</CsScore>
<CsoundSynthesizer>

All of the techniques introduced in this section are combined in the final example which includes
a 2-semitone pitch bend and tone control which is controlled by aftertouch. For tone generation

this example uses the gbuzz opcode.

EXAMPLE 07C05.csd
<CsoundSynthesizer>
<CsOptions>
-Ma -odac

</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
giCos ftgen 0,0,2/r12,11,1 ;
initc7 1,1,1 ;

instr 1
iNum notnum
iAmp ampmidi 0.1
kvol ctrl7 1,1,0,1
kPortTime linseg ©0,0.001,0.01
kvol portk kVol, kPortTime
avol interp kvol
iRange = 2
iMin = 0
kPchBnd pchbend iMin, 2*iRange
kPchBnd portk kPchBnd, kPortTime
aEnv linsegr 0,0.005,1,0.1,0
kMul aftouch 0.4,0.85
kMul portk kMul, kPortTime
; create an audio
asSig gbuzz

out asSig

endin
</CsInstruments>
<CsScore>
f 0 300
e
</CsScore>

<CsoundSynthesizer>

a cosine wave
initialize controller to its maximum level

read in midi note number
read in note velocity - range 0 to 0.2

read in CC 1,

chan. 1. Re-range from 0 to 1

create a value that quickly ramps up to 0.01
create filtered version of kVol
create an a-rate version of kVol.

equilibrium position

pitch bend in semitones (range -2 to 2)
create a filtered version of kPchBnd
amplitude envelope with release stage
read in aftertouch

create a filtered version of kMul

7
’
H
7
7
’
; pitch bend range in semitones
H
i
7
’
’
7

signal using the 'gbuzz' additive synthesis opcode
iAmp*avol*aEnv, cpsmidinn(iNum+kPchBnd), 70,0, kMul, giCos

; audio to output



41 - READING MIDI FILES

Instead of using either the standard Csound score or live midi events as input for a orchestra
Csound can read a midi file and use the data contained within it as if it were a live midi input.

The command line flag to instigate reading from a midi file is '-F' followed by the name of the file
or the complete path to the file if it is not in the same directory as the .csd file. Midi channels
will be mapped to instrument according to the rules and options discussed in Triggering
Instrument Instances and all controllers can be interpretted as desired using the techniques
discussed in Working with Controllers. One thing we need to be concerned with is that without
any events in our standard Csound score our performance will terminate immedately. To
circumvent this problem we need some sort of dummy event in our score to fool Csound into
keeping going until our midi file has completed. Something like the following, placed in the score,
is often used.

f 0 3600

This dummy 'f' event will force Csound to wait for 3600 second (1 hour) before terminating
performance. It doesn't really matter what number of seconds we put in here, as long as it is
more than the number of seconds duration of the midi file. Alternatively a conventional 'i' score
event can also keep performance going; sometimes we will have, for example, a reverb effect
running throughout the performance which can also prevent Csound from terminating.
Performance can be interrupted at any time by typing ctrl+c in the terminal window.

The following example plays back a midi file using Csound's 'fluidsynth' family of opcodes to
facilitate playing soundfonts (sample libraries). For more information on these opcodes please
consult the Csound Reference Manual. In order to run the example you will need to download a
midi file and two (ideally contrasting) soundfonts. Adjust the references to these files in the
example accordingly. Free midi files and soundfonts are readily available on the internet. | am
suggesting that you use contrasting soundfonts, such as a marimba and a trumpet, so that you
can easily hear the parsing of midi channels in the midi file to different Csound instruments. In
the example channels 1,3,5,7,9,11,13 and 15 play back using soundfont 1 and channels
2,4,6,8,10,12,14 and 16 play back using soundfont 2. When using fluidsynth in Csound we normally
use an 'always on' instrument to gather all the audio from the various soundfonts (in this
example instrument 99) which also conveniently keeps performance going while our midi file
plays back.

EXAMPLE 07D01.csd
<CsoundSynthesizer>

<CsOptions>

;'-F' flag reads in a midi file
-F AnyMIDIfile.mid

</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

sr = 44100

ksmps = 32

nchnls = 1

0dbfs = 1

sr = 44100

ksmps = 32

nchnls = 2

giEngine fluidEngine; start fluidsynth engine

; load a soundfont

iSfNumi fluidLoad "ASoundfont.sf2", giEngine, 1
; load a different soundfont

iSfNum2 fluidLoad "ADifferentSoundfont.sf2", giEngine, 1

; direct each midi channels to a particular soundfonts
fluidProgramSelect giEngine, 1, iSfNuml, O,
fluidProgramSelect giEngine, 3, iSfNuml, ©,
fluidProgramSelect giEngine, 5, iSfNumi, ©,
fluidProgramSelect giEngine, 7, iSfNumi, 0O,
fluidProgramSelect giEngine, 9, iSfNumi, O,
fluidProgramSelect giEngine, 11, iSfNuml, 0, ©
fluidProgramSelect giEngine, 13, iSfNumi, ©, ©

[cRoNoNoRo}



fluidProgramSelect giEngine, 15, iSfNuml, 0, ©
fluidProgramSelect giEngine, 2, iSfNum2, 0, ©
fluidProgramSelect giEngine, 4, iSfNum2, 0, ©
fluidProgramSelect giEngine, 6, iSfNum2, 0, ©
fluidProgramSelect giEngine, 8, iSfNum2, 0, 0
fluidProgramSelect giEngine, 10, iSfNum2, 0, ©
fluidProgramSelect giEngine, 12, iSfNum2, 0, ©
fluidProgramSelect giEngine, 14, iSfNum2, 0, ©
fluidProgramSelect giEngine, 16, iSfNum2, 0, 0

instr 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 ; fluid synths for channels 1-16

iKey notnum ; read in midi note number
ivel ampmidi 127 ; read in key velocity
; create a note played by the soundfont for this instrument
fluidNote giEngine, p1, iKey, ivel
endin

instr 99 ; gathering of fluidsynth audio and audio output

aSigL, aSigR fluidoOut giEngine ; read all audio from soundfont
outs aSigL, aSigR ; send audio to outputs
endin
</CsInstruments>
<CsScore>

i 99 0 3600 ; audio output instrument also keeps performance going
e
</CsScore>

<CsoundSynthesizer>

Midi file input can be combined with other Csound inputs from the score or from live midi and
also bear in mind that a midi file doesn't need to contain midi note events, it could instead
contain, for example, a sequence of controller data used to automate parameters of effects
during a live performance.

Rather than to directly play back a midi file using Csound instruments it might be useful to
import midi note events as a standard Csound score. This way events could be edited within the
Csound editor or several scores could be combined. The following example takes a midi file as
input and outputs standard Csound .sco files of the events contained therein. For convenience
each midi channel is output to a separate .sco file, therefore up to 16 .sco files will be created.
Multiple .sco files can be later recombined by using #include... statements or simply by using
copy and paste

The only tricky aspect of this example is that note-ons followed by note-offs need to be sensed
and calculated as p3 duration values. This is implemented by sensing the note-off by using the
release opcode and at that moment triggering a note in another instrument with the required
score data. It is this second instrument that is responsible for writing this data to a score file.
Midi channels are rendered as pl values, midi note numbers as p4 and velocity values as p5.

EXAMPLE 07D02.csd
<CsoundSynthesizer>
<CsOptions>
; enter name of input midi file
-F InputMidiFile.mid
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

;ksmps needs to be 10 to ensure accurate rendering of timings
ksmps = 10

massign 0,1

instr 1
iChan midichn
iCps cpsmidi ; read pitch in frequency from midi notes
ivel veloc 0, 127 ; read in velocity from midi notes
kDur timeinsts ; running total of duration of this note
kRelease release ; sense when note is ending

if kRelease=1 then ; if note is about to end
; p1 p2 p3 p4 p5 pé
event "i", 2, ©, kDur, iChan, iCps, iVel ; send full note data to instr 2
endif
endin

instr 2
iDur = p3



iChan = p4
iCps = p5
ivel = p6
iStartTime times ; read current time since the start of performance

; form file name for this channel (1-16) as a string variable
SFileName sprintf "Channel%d.sco",iChan
; write a line to the score for this channel's .sco file
fprints SFileName, "i%d\\t%f\\t%f\\t%f\\t%d\\n",6\
iChan,iStartTime-iDur,iDur,iCps, iVel
endin

</CsInstruments>

<CsScore>

f © 480 ; ensure this duration is as long or longer that duration of midi file
e

</CsScore>

</CsoundSynthesizer>
The example above ignores continuous controller data, pitch bend and aftertouch. The second

example on the page in the Csound Manual for the opcode fprintks renders all midi data to a
score file.



42. MIDI OUTPUT

Csound's ability to output midi data in real-time can open up many possibilities. We can relay the
Csound score to a hardware synthesizer so that it plays the notes in our score instead of a
Csound instrument. We can algorithmically generate streams of notes within the orchestra and
have these played by the external device. We could even route midi data internally to another
piece of software. Csound could be used as a device to transform incoming midi data,
transforming, transposing or arpeggiating incoming notes before they are output again. Midi
output could also be used to preset faders on a motorized fader box (such as the Behringer BCF
2000) to their correct initial locations.

INITIATING REALTIME MIDI OUTPUT

The command line flag for realtime midi output is -Q. Just as when setting up an audio input or
output device or a midi input device we must define the desired device number after the flag.
When in doubt what midi output devices we have on our system we can always specify an 'out
of range' device number (e.g. -Q999) in which case Csound will not run but will instead give an
error and provide us with a list of available devices and their corresponding numbers. We can
then insert an appropriate device number.

MIDIOUT - OUTPUTTING RAW MIDI DATA

The analog of the opcode for the input of raw midi data, midiin, is midiout. midiout will output a
midi message with its given input arguments once every k period - this could very quickly lead to
clogging of incoming midi data in the device to which midi is begin sent unless measures are
taken to prevent the midiout code from begin executed on every k pass. In the following
example this is dealt with by turning off the instrument as soon as the midiout line has been
executed just once by using the turnoff opcode. Alternative approaches would be to set the
status byte to zero after the first k pass or to embed the midiout within a conditional (if...
then...) so that its rate of execution can be controlled in some way.

Another thing we need to be aware of is that midi notes do not contain any information about
note duration; instead the device playing the note waits until it receives a corresponding note-off
instruction on the same midi channel and with the same note number before stopping the note.
When working with midiout we must also be aware of this. The status byte for a midi note-off is
128 but it is more common for note-offs to be expressed as a note-on (status byte 144) with
zero velocity. In the following example two notes (and corresponding note offs) are send to the
midi output - the first note-off makes use of the zero velocity convention whereas the second
makes use of the note-off status byte. Hardware and software synths should respond similarly
to both. One advantage of the note-off message using status byte 128 is that we can also send
a note-off velocity, i.e. how forcefully we release the key. Only more expensive midi keyboards
actually sense and send note-off velocity and it is even rarer for hardware to respond to
received note-off velocities in a meaningful way. Using Csound as a sound engine we could
respond to this data in a creative way however.

In order for the following example to work you must connect a midi sound module or keyboard
receiving on channel 1 to the midi output of your computer. You will also need to set the
appropriate device number after the '-Q' flag.

No use is made of audio so sample rate (sr), and number of channels (nchnls) are left undefined -
nonetheless they will assume default values.

EXAMPLE 07EO0]1.csd
<CsoundSynthesizer>

<CsOptions>

; amend device number accordingly
-Q999

</CsOptions>

<CsInstruments>
;Example by Iain McCurdy



ksmps = 32 ;no audio so sr and nchnls irrelevant

instr 1
; arguments for midiout are read from p-fields
istatus init p4
ichan init p5
idatal init p6
idata2 init p7
midiout istatus, ichan, idatal, idata2; send raw midi data
turnoff ; turn instrument off to prevent reiterations of midiout
endin
</CsInstruments>
<CsScore>

7p1 p2 p3 p4 p5 p6 p7
i100.01 144 1 60 100 ; note on
i120.01144 1 60 0 ; note off (using velocity zero)

i130.01 144 1 60 100 ; note on
i150.01 128 1 60 100 ; note off (using 'note off' status byte)
</CsScore>

</CsoundSynthesizer>

The use of separate score events for note-ons and note-offs is rather cumbersome. It would be
more sensible to use the Csound note duration (p3) to define when the midi note-off is sent. The
next example does this by utilizing a release flag generated by the release opcode whenever a
note ends and sending the note-off then.

EXAMPLE 07E02.csd
<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>

<CsInstruments>
;Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls omitted

instr 1
;arguments for midiout are read from p-fields
istatus init p4
ichan init p5
idatal init p6
idata2 init p7
kskip init [¢]

if kskip=0 then
midiout istatus, ichan, idatal, idata2; send raw midi data (note on)

kskip = 1; ensure that the note on will only be executed once

endif
krelease release; normally output is zero, on final k pass output is 1

if krelease=1 then; i.e. if we are on the final k pass...

midiout istatus, ichan, idatal, 0; send raw midi data (note off)
endif
endin

</CsInstruments>
<CsScore>

7Pl p2 p3  p4 pS p6 p7
i1e 4 144 1 60 100

i11 3 144 1 64 100

i12 2 144 1 67 100

f 0 5; extending performance time prevents note-offs from being lost
</CsScore>

</CsoundSynthesizer>

Obviously midiout is not limited to only sending only midi note information but instead this
information could include continuous controller information, pitch bend, system exclusive data
and so on. The next example, as well as playing a note, sends controller 1 (modulation) data
which rises from zero to maximum (127) across the duration of the note. To ensure that
unnessessary midi data is not sent out, the output of the line function is first converted into
integers, and midiout for the continuous controller data is only executed whenever this integer
value changes. The function that creates this stream of data goes slightly above this maximum
value (it finishes at a value of 127.1) to ensure that a rounded value of 127 is actually achieved.



In practice it may be necessary to start sending the continuous controller data slightly before the
note-on to allow the hardware time to respond.

EXAMPLE 07E03.csd
<CsoundSynthesizer>

<CsOptions>

; amend device number accordingly
-Q999

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

ksmps = 32 ; no audio so sr and nchnls irrelevant
instr 1

; play a midi note
; read in values from p-fields

ichan init p4
inote init p5
iveloc init p6
kskip init 0 ; 'skip' flag ensures that note-on is executed just once

if kskip=0 then
midiout 144, ichan, inote, iveloc; send raw midi data (note on)

kskip = 1 ; flip flag to prevent repeating the above line
endif

krelease release ; normally zero, on final k pass this will output 1
if krelease=1 then ; 1f we are on the final k pass..

midiout 144, ichan, inote, ® ; send a note off
endif

; send continuous controller data

iCCnum = p7

kCCval line 0, p3, 127.1 ; continuous controller data function

kCCval = int(kccval) ; convert data function to integers

ktrig changed kCCval ; generate a trigger each time kCCval changes
if ktrig=1 then ; if kCCval has changed...

midiout 176, ichan, iCCnum, kCCval ; ...send a controller message

endif
endin

</CsInstruments>

<CsScore>

7p1 p2 p3 p4 p5 p6 p7

i10e 5 1 60 100 1

f @ 7 ; extending performance time prevents note-offs from being lost
</CsScore>

</CsoundSynthesizer>

MIDION - OUTPUTTING MIDI NOTES MADE EASIER

midiout is the most powerful opcode for midi output but if we are only interested in sending out
midi notes from an instrument then the midion opcode simplifies the procedure as the following
example demonstrates by playing a simple major arpeggio.

EXAMPLE 07E04.csd
<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls irrelevant

instr 1
; read values in from p-fields
kchn = p4
knum = p5
kvel = p6

midion kchn, knum, kvel ; send a midi note
endin



</CsInstruments>

<CsScore>

Epl p2 p3 p4 p5 p6

i10 2.5 1 60 100

il10.52 164 100

i11 1.5 1 67 100

i11.51 172 100

f © 30 ; extending performance time prevents note-offs from being missed
</CsScore>

</CsoundSynthesizer>

Changing any of 'midion's k-rate input arguments in realtime will force it to stop the current midi
note and send out a new one with the new parameters.

midion2 allows us to control when new notes are sent (and the current note is stopped) through
the use of a trigger input. The next example uses 'midion2' to algorithmically generate a melodic
line. New note generation is controlled by a metro, the rate of which undulates slowly through
the use of a randomi function.

EXAMPLE 07E05.csd
<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999
</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

ksmps = 32 ; no audio so sr and nchnls irrelevant

instr 1
; read values in from p-fields
kchn = p4
knum random 48,72.99 note numbers chosen randomly across a 2 octaves

;
kvel random 40, 115 ; velocities are chosen randomly
krate randomi 1,2,1 ; rate at which new notes will be output
ktrig metro kraten2 ; 'new note' trigger
midion2 kchn, int(knum), int(kvel), ktrig ; send midi note if ktrig=1
endin

</CsInstruments>

<CsScore>

i10201

f 0 21 ; extending performance time prevents the final note-off being lost
</CsScore>

</CsoundSynthesizer>
'midion’ and 'midion2" generate monophonic melody lines with no gaps between notes.

moscil works in a slightly different way and allows us to explicitly define note durations as well as
the pauses between notes thereby permitting the generation of more staccato melodic lines.
Like ‘'midion' and 'midion2’, 'moscil’ will not generate overlapping notes (unless two or more
instances of it are concurrent). The next example algorithmically generates a melodic line using
'moscil'.

EXAMPLE 07E06.csd
<CsoundSynthesizer>
<CsOptions>
; amend device number accordingly
-Q999

</CsOptions>

<CsInstruments>
; Example by Iain McCurdy

ksmps = 32 ;no audio so sr and nchnls omitted
seed 0; random number generators seeded by system clock

instr 1
; read value in from p-field



kchn = p4
knum random 48,72.99 ; note numbers chosen randomly across a 2 octaves
kvel random 40, 115 ; velocities are chosen randomly
kdur random 0.2, 1 ; note durations chosen randomly from 0.2 to 1
kpause random 0, 0.4 ; pauses betw. notes chosen randomly from @ to 0.4
moscil kchn, knum, kvel, kdur, kpause ; send a stream of midi notes
endin

</CsInstruments>

<CsScore>

Epl p2 p3 p4é

i10 201

f 0 21 ; extending performance time prevents final note-off from being lost
</CsScore>

</CsoundSynthesizer>

MIDI FILE OUTPUT

As well as (or instead of) outputting midi in realtime, Csound can render data from all of its midi
output opcodes to a midi file. To do this we use the '--midioutfile=" flag followed by the desired
name for our file. For example:

<CsOptions>
-Q2 --midioutfile=midiout.mid
</CsOptions>

will simultaneously stream realtime midi to midi output device number 2 and render to a file
named 'midiout.mid" which will be saved in our home directory.



08 OPEN SOUND CONTROL

43. OPEN SOUND CONTROL - NETWORK
COMMUNICATION



43 OPEN SOUND CONTROL - NETWORK
COMMUNICATION

Open Sound Control (OSC) is a network protocol format for musical control data communication.
A few of its advantages compared to MIDI are, that it's more accurate, quicker and much more
flexible. With OSC you can easily send messages to other software independent if it's running on
the same machine or over network. There is OSC support in software like PD, Max/Msp, Chuck
or SuperCollider. A nice screencast of Andrés Cabrera shows communication between PD and
Csound via OSC.

OSC messages contain an IP adress with port information and the data-package which will be
send over network. In Csound, there are two opcodes, which provide access to network
communication called OSCsend, OSClisten.

Example 08A01.csd

<CsoundSynthesizer>
<CsOptions>

-0 dac

</CsOptions>
<CsInstruments>

sr = 48000

ksmps = 32

nchnls = 2

0dbfs = 1

; localhost means communication on the same machine, otherwise you need
; an IP adress

#define IPADDRESS # "localhost" #

#define S_PORT # 47120 #

#define R_PORT # 47120 #

turnon 1000 ; starts instrument 1000 immediately
turnon 1001 ; starts instrument 1001 immediately

instr 1000 ; this instrument sends 0SC-values
kvaluel randomh 0, 0.8, 4

kNum randomh 0, 8, 8

kMidiKey tab (int(kNum)), 2

kOctave randomh 0, 7, 4

kvalue2 = cpsmidinn (kMidiKey*kOctave+33)

kvalue3 randomh 0.4, 1, 4

Stext sprintf "%i", $S_PORT

0SCsend kvaluel+kValue2, $IPADDRESS, $S_PORT, "/QuteCsound",

"fff", kvaluel, kvalue2, kvalue3

endin

instr 1001 ; this instrument receives 0SC-values
kvaluelReceived init 0.0
kvalue2Received init 0.0
kvalue3Received init 0.0
Stext sprintf "%i", $R_PORT
ihandle 0SCinit $R_PORT
kAction O0SClisten ihandle, "/QuteCsound", "fff",
kvaluelReceived, kValue2Received, kValue3Received
if (kAction == 1) then
printk2 kvalue2Received
printk2 kvaluelReceived

endif
aSine poscil3 kValuelReceived, kValue2Received, 1
; a bit reverbration
aInVerb = aSine*kValue3Received
aWetL, aWetR freeverb aInVerb, aInVerb, 0.4, 0.8
outs aWetL+aSine, aWetR+aSine
endin

</CsInstruments>

<CsScore>

f 10 1024 10 1

f 208 -2 024791102
e 3600

</CsScore>

</CsoundSynthesizer>



; example by Alex Hofmann (Mar. 2011)
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44 CSOUND IN PD

INSTALLING

You can embed Csound in PD via the external csoundapi~, which has been written by Victor
Lazzarini. This external is part of the Csound distribution.

On Ubuntu Linux, you can install the csoundapi~ via the Synaptic package manager. Just look
for "csoundapi~" or "pd-csound", check "install", and your system will install the library at the
appropriate location. If you build Csound from sources, you should also be able to get the
csoundapi~ via the scons option buildPDClass=1. It will be put as csoundapi~.pd_linux in
{usr/lib/pd/extra, so that PD should be able to find it. If not, add it to PD's search path (File-
>Path...).

On Mac OSX, you find the csoundapi~ in the following path:
/Library/Frameworks/CsoundLib.framework/Versions/5.2/Resources/PD/csoundapi~.pd_darwin

Put this file in a folder which is in PD's search path. For PD-extended, it's by default ~/Library/Pd.
But you can put it anywhere. Just make sure that the location is specified in PD's Preferences >
Path... menu.

On Windows, while installing Csound, open up the "Front ends" component in the Installer box
and make sure the item "csoundapi~" is checked:

{57 Csound Setup N s e S
Choose Components P
Choose which features of Csound you want to install. {4 }

Chedk the components you want to install and uncheck the components you don't want to
install. Click Install to start the installation.

Select the type of install: [Default At

Or, select the optional
components you wish to
install:

Utilities -
Documentation

QuteCsound (user-defined widgets)
-[] tdcsound {requires TCL/Tk)
csoundapi~ (requires Pure Data)
und interfaces

C/C++

m

Space required: 129, 2MB

[ < Back ][ Install ][ Cancel ] |

After having finished the installation, you will find csoundapi~.dll in the csound/bin folder. Copy
this file into the pd/extra folder, or in any other location in PD's search path.

When you have installed the "csoundapi~" extension on any platform, and included the file in
PD's search path if necessary, you should be able to call the csoundapi~ object in PD. Just open a
PD window, put a new object, and type in "csoundapi~":



® Pd File Edit Put Find Media Window Help

P o
IN ouT =
|| compute audio
] [ = DIO clear
= peak meters

cup cup

input channels = 2, output channels = 2
input device @, channels 2 — !
output device Z, channels 2 Untitled-1* -
framesperbuf 64, nbufs 34

. opened OK.

csoundapi~ 1.81
A PD csound class using the Csound 5.12.3 API
(c) V Lazzarini, 2005-2007

CONTROL DATA

You can send control data from PD to your Csound instrument via the keyword "control" in a
message box. In your Csound code, you must receive the data via invalue or chnget. This is a
simple example:

EXAMPLE 09A01.csd

<CsoundSynthesizer>
<CsOptions>

</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sSr = 44100

nchnls = 2

0dbfs = 1

ksmps = 8

giSine ftgen 0, 0, 2n10, 10, 1

instr 1

kFreq invalue "freq"

kAmp invalue "amp"

asin oscili kAmp, kFreq, giSine
outs asin, aSin

endin

</CsInstruments>

<CsScore>

i1 0 10000

</CsScore>

</CsoundSynthesizer>

Save this file under the name "control.csd". Save a PD window in the same folder and create the
following patch:



@ Pd File Edit Put Find Media Window Help

o660 =
IN ouTt &
compute audio
= - [ peak meters
cup cup)

Creating orchestra r
Creating score

orchname: /var/fol ders/mk/mkpuhjKKE JOEGPAHAD3NG++-+TT/-Tmp-//csound- tbKFbM .orc
scorename: /var/folders/mk/mkpuh]KkE JOEGPNHAD3W@++++T1/-Tmp-//csound-Tqvnbs. sco
rtaudio: PortAudio module enabled ...

using callback interface

rtwidi: PortMIDI module enabled

orch compiler: 600
instr
1
Elopsed time at end of orchestra compile: real: 8.002s, CPU: ©.08Zs set invalue
sorting score ... channels first
... done -
Elapsed time at end of score sort: real: 0.002s, CPU: 0.002s St amp freg Fei
Csound version 5.12 (float samples) May 4 2010
displays suppressed [Control amp $1[ [control freq $1[

0dBFS level = 1.0

fable 101: soundapi- control.csd
orch now loaded

audio buffered in 1024 sample-frame blocks

SECTION 1: ac]

new alloc for instr 1:

Note that for invalue channels, you first must register these channels by a "set" message.

As you see, the first two outlets of the csoundapi~ object are the signal outlets for the audio
channels 1 and 2. The third outlet is an outlet for control data (not used here, see below). The
rightmost outlet sends a bang when the score has been finished.

LIVE INPUT

Audio streams from PD can be received in Csound via the inch opcode. As many input channels
there are, as many audio inlets are created in the csoundapi~ object. The following CSD uses two
audio inputs:

EXAMPLE 09A02.csd
<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
0dbfs = 1
ksmps = 8
nchnls = 2
instr 1
aL inch 1
aR inch 2
kefL randomi 100, 1000; center frequency
kcfR randomi 100, 1000; for band pass filter
aFiltL butterbp aL, kcfL, kcfL/10
aoutL balance aFiltL, aL
aFiltR butterbp aR, kcfR, kcfR/10
aoutR balance aFiltR, aR
outch 1, aoutL
outch 2, aoutR
endin
</CsInstruments>
<CsScore>
i1 06 10000
</CsScore>

</CsoundSynthesizer>

The corresponding PD patch is extremely simple:



® Pd File Edit Put Find Media Window Help

066 Pd
IN out )
] ] E compute audio
— m— [ peak meters

Creating orchestra

Creating score

orchname:  Avar/folders/mk/mkpuhjKKE JOEGPRHAD3NG+++TL/~Tmp-//csound-LIt19Q.orc
scorename: /var/folders./mk/mkpuhJKkE JOEQPRHAD3WG++++T1/~Tmp-//csound-KAVIUg. sco
rtaudio: PortAudio module enabled ...

using callback interface

rtmidi: PortMIDI module enabled () 0.0.- Ii_ve.Ed_ - ﬂual:him:CsuunleD

orch compiler:

instr
1

Elapsed time at end of orchestra compile: real: 9.002s, CPU: ©.001s Be careful with feedback!
sorting score ...
.. done
Elapsed time at end of score sort: real: 8.082s, CPU: 0.002s
Csound version 5.12 (float samples) May 4 2010
displays suppressed
OCBFS level = 1.0
orch now Loaded
audio buffered in 1024 sample-frame blocks
SECTION 1:
new alloc for instr 1:
saved to: /Joachim/Csound/PD/live.pd

MIDI

The csoundapi~ object receives MIDI data via the keyword "midi". Csound is able to trigger
instrument instances in receiving a "note on" message, and turning them off in receiving a "note
off" message (or a note-on message with velocity=0). So this is a very simple way to build a
synthesizer with arbitrary polyphonic output:

800 midi.pd - [Joachim/Csound/PD

¥YOU MUST USE THE OPTION -+rtmidi=null -M0 IN YOUR CSD FILE!

#

This is the corresponding midi.csd. It must contain the options -+rtmidi=null -MO in the
<CsOptions> tag. It's an FM synth which changes the modulation index according to the verlocity:
the more you press a key, the higher the index, and the more partials you get. The ratio is
calculated randomly between two limits which can be adjusted.

EXAMPLE 09A03.csd

<CsOptions>

-+rtmidi=null -M@

</CsOptions>

<CsoundSynthesizer>

<CsInstruments>

;Example by Joachim Heintz

sr = 44100

ksmps = 8

nchnls = 2

0dbfs = 1

giSine ftgen 0, 0, 2n10, 10, 1

instr 1

iFreq cpsmidi ;gets frequency of a pressed key

iAmp ampmidi 8;gets amplitude and scales 0-8

iRatio random .9, 1.1; ratio randomly between 0.9 and 1.1
aTone foscili .1, iFreq, 1, iRatio/5, iAmp+1, giSine; fm

aEnv linenr aTone, 0, .01, .01; avoiding clicks at the end of a note



outs aEnv, aEnv

endin

</CsInstruments>

<CsScore>

f 0 36000; play for 10 hours
e

</CsScore>
</CsoundSynthesizer>

SCORE EVENTS

Score events can be sent from PD to Csound by a message with the keyword event. You can
send any kind of score events, like instrument calls or function table statements. The following
example triggers Csound's instrument 1 whenever you press the message box on the top.
Different sounds can be selected by sending f events (building/replacing a function table) to
Csound

en0n event.pd - [Joachim/Csound/PD
call instrument 1
choose different function tables for the sound
Sine [efent f 1 0 1024 10 1f
LY
saw [Avent £ 1 0 1024 10 1 .5 .33 .25 .2 .167 .143[
Square [dyent f 1 0 1024 10 1 0 .33 0 .2 0 .143]
LA
Triangle |[e¥gnt £ 1 0 1024 10 1 0 -.111 0 .04 0 -.02 0 .0123]
AN
Impulse it £ 1 01024 1011111111 1]
csoundapi~ avan:.csi
Y
EXAMPLE 09A04.csd
<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>
;Example by Joachim Heintz
sr = 44100
ksmps = 8
nchnls = 2
0dbfs = 1
seed 0; each time different seed
giSine ftgen 1, 0, 2710, 10, 1; function table 1
instr 1
iDur random 0.5, 3
p3 = ibur
iFreql random 400, 1200
iFreq2 random 400, 1200
idB random -18, -6
kFreq linseg iFreq1, iDur, iFreq2
KEnv transeg ampdb(idB), p3, -10, ©
aTone oscili kEnv, kFreq, 1
outs aTone, aTone
endin
</CsInstruments>
<CsScore>
f 0 36000; play for 10 hours
e
</CsScore>

</CsoundSynthesizer>

CONTROL OUTPUT



If you want Csound to give any sort of control data to PD, you can use the opcodes outvalue or
chnset. You will receive this data at the second outlet from the right of the csoundapi~ object.
The data are sent as a list with two elements. The name of the control channel is the first
element, and the value is the second element. You can get the values by a route object or by a
send/receive chain. This is a simple example:

a0 O ‘cnntminut.pd - (Joachim/Csound/PD

[:csoundapi- con:mlout.csdj
_._ %1 = channel
31 52 $2 = value
r tine
Go 7
P
EXAMPLE 09A05.csd
<CsoundSynthesizer>
<CsOptions>
</CsOptions>
<CsInstruments>

;Example by Joachim Heintz

sr = 44100
nchnls = 2
0dbfs 1
ksmps 8

[y

instr
ktim times
kphas phasor 1
outvalue "time", ktim
outvalue '"phas", kphas*127
endin

</CsInstruments>
<CsScore>

il10 30

</CsScore>
</CsoundSynthesizer>

SEND/RECEIVE BUFFERS FROM PD TO CSOUND AND BACK

Recently (January 2012) Victor Lazzarini has introduced a new feature which makes it possible to
send a PD array to Csound, and a Csound function table to PD. The message tabset [tabset
array-name ftable-number] copies a PD array into a Csound function table. The message tabget
[tabget array-name ftable-number] copies a Csound function table into a PD array. The example
below should explain everything. Just choose another soundfile instead of "stimme.wav".



File Edit Put Find Windows Media Help

stimme fox
1oadbang
I

I I- éd dsp 1

read stimme.wav stimme

soundfiler

=e\rent 11021 1) play table 1 in csound and you will hear nothing because
the table is empty

l‘=tla et stimme 1| 2) copies from array "stimme" to csound table no 1

event 1 1 @21/ 3) now play table 1 in csound again

event 1 1 @ 2,67 2. 4) play table 2 in csound

?tlabge‘t fox 2 5) copy this table to the pd array "fox"

reset

csoundapi~ GOACE.csd,

dac~

EXAMPLE 06A06.csd

<CsoundSynthesizer>
<CsOptions>

-odac

</CsOptions>
<CsInstruments>

sr = 44100

ksmps = 8

nchnls = 1

0dbfs = 1

giCopy ftgen 1, 0, -88200, 2, 0 ;"empty" table
giFox ftgen 2, 0, 0, 1, "fox.wav", 0, 0, 1

opcode BufPlayl, a, ipop
ifn, ispeed, iskip, ivol xin

icps = ispeed / (ftlen(ifn) / sr)
iphs = iskip / (ftlen(ifn) / sr)
asig poscil3 ivol, icps, ifn, iphs
xout asig
endop
instr 1
itable = p4
aout BufPlayl itable
out aout
endin
</CsInstruments>
<CsScore>
f 0 99999
</CsScore>

</CsoundSynthesizer>
;example by joachim heintz

SETTINGS

Make sure that the Csound vector size given by the ksmps value, is not larger than the internal
PD vector size. It should be a power of 2. I'd recommend to start with ksmps=8. If there are
performance problems, try to increase this value to 16, 32, or 64.

The csoundapi~ object runs by default if you turn on audio in PD. You can stop it by sending a
"run 0" message, and start it again with a "run 1" message.

You can recompile the .csd file of a csoundapi~ object by sending a "reset" message.



By default, you see all the messages of Csound in the PD window. If you don't want to see them,
send a "message 0" message. "message 1" prints the output again.

If you want to open a new .csd file in the csoundapi~ object, send the message "open", followed
by the path of the .csd file you want to load.

A "rewind" message rewinds the score without recompilation. The message "offset", followed by
a number, offsets the score playback by an amount of seconds.

S0 0 settings.pd -,-'Jo:-achim,l’Csound!PD

csound runs by default, run 0 message stops it, run 1
re-starts it

]

epinds the score without recompilation

offsets the score playback by 20 secs

reset| resets the engine and recompiles the score

[open csapi_demo.csd[ opens a new orc/score

csoundapi~ is built with the number of audio output
channels taken from the orchestra, or it can be built with
a set number of eut/inlets (when its 1st argument is
numeric)

{all deseriptions from vietor lazzarini's esoundapi.pd
example patch which comes with the csoundapi~ object)




CSOUND IN MAXMSP

The information contained within this document pertains to csound~ v1.0.7.

INTRODUCTION

Csound can be embedded in a Max patch using the csound~ object. This allows you to synthesize
and process audio, MIDI, or control data with Csound.

INSTALLING

Before installing csound~, install Csound5. csound~ needs a normal Csound5 installation in order
to work. You can download Csound5 from here.

Once Csound5 is installed, download the csound~ zip file from here.

INSTALLING ON MAC OS X

1. Expand the zip file and navigate to binaries/MacOSX/.

2. Choose an mxo file based on what kind of CPU you have (intel or ppc) and which type of
floating point numbers are used in your Csound5 version (double or float). The name of the
Csound5 installer may give a hint with the letters "f* or "d" or explicitly with the words
"double" or "float". However, if you do not see a hint, then that means the installer
contains both, in which case you only have to match your CPU type.

3. Copy the mxo file to:

o Max 4.5: [Library/Application Support/Cycling '74/externals/
o Max 4.6: /Applications/MaxMSP 4.6/Cycling'74/externals/
o Max 5: /Applications/Max5/Cycling 74/msp-externals/

4. Rename the mxo file to "csound~.mxo".

5. If you would like to install the help patches, navigate to the help_files folder and copy all
files to:

o Max 4.5: [Applications/MaxMSP 4.5/max-help/
o Max 4.6 /Applications/MaxMSP 4.6/max-help/
o Max 5: [Applications/Max5/Cycling 74/msp-help/

INSTALLING ON WINDOWS

1. Expand the zip file and navigate to binaries\Windows\.

2. Choose an mxe file based on the type of floating point numbers used in your Csound5
version (double or float). The name of the Csound5 installer may give a hint with the
letters "f* or "d" or explicitly with the words "double" or "float".

3. Copy the mxe file to:

o Max 4.5: C:\Program Files\Common Files\Cycling '74\externals\
o Max 4.6: C:\Program Files\Cycling '74\MaxMSP 4.6\Cycling '74\externals\
o Max 5: C:\Program Files\Cycling 74\Max 5.0\Cycling '74\msp-externals\

4. Rename the mxe file to "csound~.mxe".

5. If you would like to install the help patches, navigate to the help_files folder and copy all
files to:

o Max 4.5: C:\Program Files\Cycling 74\MaxMSP 4.5\max-help\
o Max 4.6: C:\Program Files\Cycling '74\MaxMSP 4.6\max-help\
o Max 5: C:\Program Files\Cycling '74\Max 5.0\Cycling '74\msp-help\

KNOWN ISSUES

On Windows (only), various versions of Csound5 have a known incompatibility with csound~ that
has to do with the fluid opcodes. How can you tell if you're affected? Here's how: if you stop a
Csound performance (or it stops by itself) and you click on a non-MaxMSP or non-Live window
and it crashes, then you are affected. Until this is fixed, an easy solution is to remove/delete
fluidOpcodes.dll from your plugins or plugins64 folder. Here are some common locations for that
folder:

e C:\Program Files\Csound\plugins
e C:\Program Files\Csound\plugins64



CREATING A CSOUND~ PATCH

1. Create the following patch:
© helloworld =8 = |

File Edit View Object »»

stop

csound-~ helloworld.csd @hscale 0
- i - - -

»

»

2. Save as "helloworld.maxpat" and close it.
3. Create a text file called "helloworld.csd" within the same folder as your patch.
4. Add the following to the text file:

EXAMPLE 09B01.csd
<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr = 44100

ksmps = 32

nchnls = 2

0dbfs =1

instr 1

aNoise noise .1, O
outch 1, aNoise, 2, aNoise
endin

</CsInstruments>
<CsScore>

f0 86400

il 0 86400

e

</CsScore>
</CsoundSynthesizer>

5. Open the patch, press the bang button, then press the speaker icon.

At this point, you should hear some noise. Congratulations! You created your first csound~
patch.

You may be wondering why we had to save, close, and reopen the patch. This is needed in order
for csound~ to find the csd file. In effect, saving and opening the patch allows csound~ to "know"
where the patch is. Using this information, csound~ can then find csd files specified using a
relative pathname (e.g. "helloworld.csd"). Keep in mind that this is only necessary for newly
created patches that have not been saved yet. By the way, had we specified an absolute
pathname (e.g. "C:/Mystuff/helloworld.csd"), the process of saving and reopening would have been
unnecessary.

The "@scale 0" argument tells csound~ not to scale audio data between Max and Csound. By
default, csound~ will scale audio to match 0dB levels. Max uses a 0dB level equal to one, while
Csound uses a 0dB level equal to 32768. Using "@scale 0" and adding the statement "0dbfs = 1"
within the csd file allows you to work with a 0dB level equal to one everywhere. This is highly
recommended.

AUDIO 1/O0

All csound~ inlets accept an audio signal and some outlets send an audio signal. The number of
audio outlets is determined by the arguments to the csound~ object. Here are four ways to
specify the number of inlets and outlets:

e [csound~ @io 3]



e [csound~ @i 4 @o 7]
e [csound~ 3]
e [csound~ 4 7]

"@io 3" creates 3 audio inlets and 3 audio outlets. "@i 4 @o 7" creates 4 audio inlets and 7 audio
outlets. The third and fourth lines accomplish the same thing as the first two. If you don't specify
the number of audio inlets or outlets, then csound~ will have two audio inlets and two audio
oulets. By the way, audio outlets always appear to the left of non-audio outlets. Let's create a
patch called audio_io.maxpat that demonstrates audio i/o:

0 audio io [E=REEE

File Edit View Object Arrange Options Debug »»

stop i~ 219 fri~ 220 tri~ 226
- - -
' ! '
- d~ audio_i E’ le 0 @i3 :'2'
CsoUnd~ audlda_Io.Cs scale | {a]
csound- alidio 1o csd@scale 0 i o 2

A B E B B B

Here is the corresponding text file (let's call it audio_io.csd):

EXAMPLE 09B02.csd
<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr = 44100

ksmps = 32

nchnls = 3

0dbfs =1

instr 1

aTril inch 1

aTri2 inch 2

aTri3 inch 3

aMix = (aTril + aTri2 + aTri3d) * .2
outch 1, aMix, 2, aMix

endin

</CsInstruments>
<iCsScore>

f0 86400

il 0 86400

e

</CsScore>
</CsoundSynthesizer>

In audio_io.maxpat, we are mixing three triangle waves into a stereo pair of outlets. In
audio_io.csd, we use inch and outch to receive and send audio from and to csound~. inch and
outch both use a numbering system that starts with one (the left-most inlet or outlet).

Notice the statement "nchnls = 3" in the orchestra header. This tells the Csound compiler to
create three audio input channels and three audio output channels. Naturally, this means that
our csound~ object should have no more than three audio inlets or outlets.

CONTROL MESSAGES

Control messages allow you to send numbers to Csound. It is the primary way to control Csound
parameters at i-rate or k-rate. To control a-rate (audio) parameters, you must use and audio
inlet. Here are two examples:

e control frequency 2000
e cresonance .8

Notice that you can use either "control" or "c" to indicate a control message. The second
argument specifies the name of the channel you want to control and the third argument
specifies the value.



The following patch and text file demonstrates control messages:

@ control_messages I.“‘:' (Sl | S

File Edit View Object Arrange Options =>

cmod $1

pak ¢ pitch 0

csound~ control_messages.csd @scale 0
= Sk — — —

A O S B 0 0849 88

EXAMPLE 09B03.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr 44100

ksmps 32

nchnls 2

0dbfs 1

giSine ftgen 1, 0, 16384, 10, 1 ; Generate a sine wave table.

instr 1

kPitch chnget "pitch"

kMod invalue "mod"

aFM foscil .2, cpsmidinn(kPitch), 2, kMod, 1.5, giSine
outch 1, aFM, 2, aFM

endin

</CsInstruments>

<CsScore>

fO 86400

il © 86400

e

</CsScore>

</CsoundSynthesizer>

In the patch, notice that we use two different methods to construct control messages. The "pak"
method is a little faster than the message box method, but do whatever looks best to you. You
may be wondering how we can send messages to an audio inlet (remember, all inlets are audio
inlets). Don't worry about it. In fact, we can send a message to any inlet and it will work.

In the text file, notice that we use two different opcodes to receive the values sent in the
control messages: chnget and invalue. chnget is more versatile (it works at i-rate and k-rate,
and it accepts strings) and is a tiny bit faster than invalue. On the other hand, the limited
nature of invalue (only works at k-rate, never requires any declarations in the header section of
the orchestra) may be easier for newcomers to Csound.

MIDI

csound~ accepts raw MIDI numbers in it's first inlet. This allows you to create Csound instrument
instances with MIDI notes and also control parameters using MIDI Control Change. csound~
accepts all types of MIDI messages, except for: sysex, time code, and sync. Let's look at a patch
and text file that uses MIDI:



O midi == = |

File Edit View Object Arrange Options Debug Extras >>

stop

N
makenote 64 1000

pak 10
pack 00 T

midiformat 1

csound~ midi.csd @scaleﬁ
oy m m T

EXAMPLE 09B04.csd

<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr 44100

ksmps 32

nchnls 2

0dbfs 1

massign 0, O ; Disable default MIDI assignments.
massign 1, 1 ; Assign MIDI channel 1 to instr 1.

giSine ftgen 1, 0, 16384, 10, 1 ; Generate a sine wave table.

instr 1

iPitch cpsmidi

kMod midic7 1, 0, 10

aFM foscil .2, iPitch, 2, kMod, 1.5, giSine
outch 1, aFM, 2, aFM

endin

</CsInstruments>

<CsScore>

fO 86400

e

</CsScore>

</CsoundSynthesizer>

In the patch, notice how we're using midiformat to format note and control change lists into raw
MIDI bytes. The "1" argument for midiformat specifies that all MIDI messages will be on channel
one.

In the text file, notice the massign statements in the header of the orchestra. "massign 0,0"
tells Csound to clear all mappings between MIDI channels and Csound instrument numbers. This is
highly recommended because forgetting to add this statement may cause confusion somewhere
down the road. The next statement "massign 1,1" tells Csound to map MIDI channel one to
instrument one.

To get the MIDI pitch, we use the opcode cpsmidi. To get the FM modulation factor, we use
midic7 in order to read the last known value of MIDI CC number one (mapped to the range

[0,10]).

Notice that in the score section of the text file, we no longer have the statement "il 0 86400"
as we had in earlier examples. This is a good thing as you should never instantiate an instrument
via both MIDI and score events (at least that has been this writer's experience).

EVENTS

To send Csound events (i.e. score statements), use the "event" or "e" message. You can send
any type of event that Csound understands. The following patch and text file demonstrates how
to send events:



oevenﬁ L‘:' =l ﬂ

File Edit View Object Arrange Options =>

H

thi 218 |duration

—

stop | packeil03. G4

EilOdh553 1

-
csound~ events.csd @scale 0
 p  m o Em Tm

A O G H O 0J 86

EXAMPLE 09B05.csd
<CsoundSynthesizer>
<CsInstruments>
;Example by Davis Pyon
sr = 44100
ksmps = 32
nchnls = 2
0dbfs =1
instr 1
ibur = p3
iCps = cpsmidinn(p4)
iMeth = 1

print ibDur, iCps, iMeth

aPluck pluck .2, iCps, iCps, 0, iMeth
outch 1, aPluck, 2, aPluck

endin

</CsInstruments>

<CsScore>

fO0 86400

e

</CsScore>

</CsoundSynthesizer>

In the patch, notice how the arguments to the pack object are declared. The "i" statement tells
Csound that we want to create an instance of instrument one. There is no space between "i"
and "1" because pack considers "i" as a special symbol signifying an integer. The next number
specifies the start time. Here, we use "0" because we want the event to start right now. The
duration "3." is specified as a floating point number so that we can have non-integer durations.
Finally, the number "64" determines the MIDI pitch. You might be wondering why the pack object
output is being sent to a message box. This is good practice as it will reveal any mistakes you
made in constructing an event message.

In the text file, we access the event parameters using p-statements. We never access pl
(instrument number) or p2 (start time) because they are not important within the context of our
instrument. Although p3 (duration) is not used for anything here, it is often used to create audio
envelopes. Finally, p4 (MIDI pitch) is converted to cycles-per-second. The print statement is
there so that we can verify the parameter values.



46 CSOUND IN ABLETON LIVE

Csound can be used in Ableton Live through Max4Live. Max4Live is a toolkit which allows users
to build devices for Live using Max/MSP. Please see the previous section on using Csound in
Max/MSP for more details on how to use Csound in Live.

Cabbage can also be used to run Csound in Live, or any other audio plugin host. Please refer to
the section titled 'Cabbage' in chapter 10.



47. D. CSOUND AS A VST PLUGIN

Csound can be built into a VST or AU plugin through the use of the Csound host API. Refer to the
section on using the Csound API for more details.

If you are not well versed in low level computer programming you can just use Cabbage to
create Csound based plugins. See the section titled 'Cabbage' in Chapter 10.
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48 CSOUNDQT

CsoundQt is a free, cross-platform graphical frontend to Csound. It features syntax highlighting,
code completion and a graphical widget editor for realtime control of Csound. It comes with
many useful code examples, from basic tutorials to complex synthesizers and pieces written in
Csound. It also features an integrated Csound language help display.

CsoundQt (named QuteCsound until automn 2011) can be used as a code editor tailored for
Csound, as it facilitates running and rendering Csound files without the need of typing on the
command line using the Run and Render buttons.

01pvsanal_pvsynth.csd - QuteCsound

Edit Control

0x ¢ 9% DD

New Open Save Undo Redo Cut Copy Paste

b & @ B A ® X & §

Run| Stop RuninTerm Record Render Ext Editor Ext.Player Configure Widgets Manual

Inspector ® | test.csd | O1pvsanal_pvsynth.csd X
Inspector opcode FilePlay2, aa, Skoo ; Credit to Joachim Heintz
¥ Opcodes ,gives stereo output regardless your soundfile is mono or stereo
opcode FilePlay2, aa, Skoo... Sfil, kspeed, iskip, iloop xin
Macros ichn filenchnls  Sfi|
¥ Instruments ifichn == 1 then
;Notes on modifications fr... aL diskin2 Sfil, kspeed, iskip, iloop
; Use Base64 encoded files... aR = aL ‘ |
;my flags on Ubuntu: -iadc -... else ‘ |
instr 1;GUI aL, aR diskin2 Sfil, kspeed, iskip, iloop
instr2 endif
F-tables xout aL, aR
Score endop

instr 1 ;GUl
ktrig metro 10
if (ktrig == 1) ?her!

Output Console &
Csound version 5.12 (double samples) Sep 15 2010 -
O0dBFS level = 1.0

orch now loaded

audio buffered in 256 sample-frame blocks

ALSA input: total buffer size: 1024, period size: 256

reading 1024-byte blks of shorts from adc (RAW)

ALSA output: total buffer size: 1024, period size: 256

writing 1024-byte blks of shorts to dac

SECTION 1:

new alloc for instr 1:

Line 25

In the widget editor panel, you can create a variety of widgets to control Csound. To link the
value from a widget, you first need to set its channel, and then use the Csound opcode invalue.
To send values to widgets, e.g. for data display, you need to use the outvalue opcode.



New Open Save Undo Redo Cut Copy Paste

bpE @ @ o

{Run Stop RuninTerm Record Render Ext Editor Ext.Player Configure |Widgets Manual

Inspectar ® | test.csd O1pvsanal pvsynth.csd | @ Pipe_Synth.csd
Inspector <CsoundSynthesizer>
v Opcodes. <CsOptions>
» opcode PIPE, a, iliiliikkkkk... || -fdm0 -odac -b1024 -B2048 --expression-opt -+rtaudio=alsa -+rtmidi=alsa -Ma --midi-key=4
opcode REVERB, aa, akkkk... | | </CsOptions>
Macros = mb s mdn n
¥ Instruments ;P Widgets

instr 1;Pipe (physical wave
instr 99 ;Reverb unit

¥ F-tables
£ 100256 -25 00,000006 12..
F110512-2500.00012475 ...
£10128-2500.002272727...
F20128-2508.175796921...
F30512 101 ;sinus for poscil

Score

SYNTH PIPE

LTl

Qutput Consale

«chnl 16 usimi instr 1 4 3 -
ALSA midi: Using all devices.
ALSA: opened MIDI input device "hw:1,0° ]

orch now loaded
audio buffered in 1024 sample-frame blo
ALSA: -b 1024 not allowed on this device;

CsoundQt also offers convenient facilities for score editing in a spreadsheet like environment
which can be transformed using Python scripting.

File Edit

0Ne @+ D PE ® @ B B £ X & @

New Open Save Undo Redo Cut Copy Paste Run Stop RuninTerm Record Render Ext.Editor Ext.Player Configure Widgets Manual

Control View

Inspector ® | test.csd O1pvsanal_pvsynth.csd | Pipe_Syntl
inspecto <CsoundSynthesizer> ( New J Stanall
v »
(:p;z;(ssde PIPE, a, iiiiiiikkkkk. .. <f§s°pt|ons> || show!| Pray | Loop | sync Name Looplength | Loop Range | Tempo
3, -fdm0 -odac -b1024 -B2048 --expressi| — =
opcode REVERB, 23, akkkk... || </CsOptions> g} O New 8 11 100
Macros <CsInstruments> 0 Line 8 11 60
¥ Instruments :Physical Waveguide Midi synth with (/& & |C) short 8 1 60
instr 1;Pipe (physical wave... | | -Modified for QuteCsound examples by
instr 99 ;Reverb unit
v Ftables i
£100256-2500.000006 12... | | ksmps
£110512-2500.00012475 ... | | nchnls.

£10128-2500.002272727...

[ Menu v| view [sheet v| Tempo [100.00|: LoopLength [8.000 :
Event p1(instr) p2(start) p3 (dur) 4 5 T P PP
pai(in=n)in2)(start) Spai(duc NP B [menu View [sheet »| Tempo [ 60.00 |} Loop Length [8.000 |
1 1 0 0.4 64 —_— — =
Event p1(instr) p2(start) p3 (dur) 4 5
2 1 05 04 68 p1(instr) p2(start) p3(dur) p [
1]i 1 45 0.4 67
3 i 1 1 04 71
2)i 1 5 0.4 8
4 1 15 04 69
01 97
5 i 1 2 04 60
6 i 1 25 0.4 61
7 i 1 3 0.4 61 | Menu - View |sheet Tempo | 60.00 - Loop Length | 8.000 .
8 i 1 35 0.4 68 Event p1(instr) p2(start) p3(dur) p4 PS5
9 i 1 4 04 61 4.5 0.4 67
10 1 4.5 0.4 67 5 0.4 68
1 1 5 0.4 68 5.5 o1 97
12 1 55 0.1 97 6 01 60
13 1 6 0.1 60 6.5 0.1 73
140 1 6.5 0.1 73 61 1 7 0.1 66
15 1 7 0.1 66 Ti 1 7.5 mm
16 i 1 75 0.1 61
ih?

@ Pipe_Synth.csd... @ ® LiveEvent—New @ LiveEvent—Line & Live Event-Short [

You will find more detailed information and video tutorials in the CsoundQt home page at
http://qutecsound.sourceforge.net.



49 WINXOUND

WinXound Description:

WinXound is a free and open-source Front-End GUI Editor for CSound 5, CSoundAV,
CSoundAC, with Python and Lua support, developed by Stefano Bonetti.

It runs on Microsoft Windows, Apple Mac OsX and Linux.

WinXound is optimized to work with the new CSound 5 compiler.

WinXound Features:

e Edit CSound, Python and Lua files (csd, orc, sco, py, lua) with Syntax Highlight and
Rectangular Selection;

e Run CSound, CSoundAV, CSoundAC, Python and Lua compilers;

o Run external language tools (QuteCsound, Idle, or other GUI Editors);

e CSound analysis user friendly GUI;

o Integrated CSound manual help;

e Possibilities to set personal colors for the syntax highlighter;

e Convert orc/sco to csd or csd to orc/sco;

e Split code into two windows horizontally or vertically;

e CSound csd explorer (File structure for Tags and Instruments);

e CSound Opcodes autocompletion menu;

e Line numbers;

e Bookmarks;

e ...and much more ... (Download it!)

Web Site and Contacts:

- Web: winxound.codeplex.com
- Email: stefano_bonetti@tin.it (or stefano_bonetti@alice.it)

REQUIREMENTS

System requirements for Microsoft Windows:

e Supported: Xp, Vista, Seven (32/64 bit versions);

e (Note: For Windows Xp you also need the Microsoft Framework .Net version 2.0 or major.
You can download it from www.microsoft.com site);

e (CSound 5: http://sourceforge.net/projects/csound - (needed for CSound and Lualit
compilers);

e Not requested but suggested: CSoundAV by Gabriel Maldonado
(http://www.csounds.com/maldonado/);

e Requested to work with Python: Python compiler (http://www.python.org/download/)

System requirements for Apple Mac OsX:

e Osx 10.5 or major;
e (CSound 5: http://sourceforge.net/projects/csound - (needed for CSound compiler);

System requirements for Linux:

e Gnome environment or libraries;
e Please, read carefully the "ReadMe" file in the source code.

INSTALLATION AND USAGE

Microsoft Windows Installation and Usage:

e Download and install the Microsoft Framework .Net version 2.0 or major (only for Windows
Xp);



e Download and install the latest version of CSound 5
(http://sourceforge.net/projects/csound);

o Download the WinXound zipped file, decompress it where you want (see the (*)note below),
and double-click on "WinXound_Net" executable;

e (*)note: THE WINXOUND FOLDER MUST BE LOCATED IN A PATH WHERE YOU HAVE FULL
READ AND WRITE PERMISSION (for example in your User Personal folder).

Apple Mac OsX Installation and Usage:

e Download and install the latest version of CSound 5
(http://sourceforge.net/projects/csound);

e Download the WinXound zipped file, decompress it and drag WinXound.app to your
Applications folder (or where you want). Launch it from there.

Linux Installation and Usage:

e Download and install the latest version of CSound 5 for your distribution;
e Ubuntu (32/64 bit): Download the WinXound zipped file, decompress it in a location where
you have the full read and write permissions;
e To compile the source code:
1) Before to compile WinXound you need to install:
- gtkmm-2.4 (libgtkmm-2.4-dev) >= 2.12
- vte (libvte-dev)
- webkit-1.0 (libwebkit-dev)

2) To compile WinXound open the terminal window, go into the uncompressed
"winxound_gtkmm" directory and type:

./configure

make

3) To use WinXound without installing it:

make standalone

./bin/winxound

[Note: WinXound folder must be located in a path where you have full read and write
permission.]

4) To install WinXound:
make install

Source Code:

e Windows: The source code is written in C# using Microsoft Visual Studio C# Express Edition
2008.

e OsX: The source code is written in Cocoa and Objective-C using XCode 3.2 version.

e Linux: The source code is written in C++ (Gtkmm) using Anjuta.

Note: The TextEditor is entirely based on the wonderful SCINTILLA text control by Neil Hodgson
(http://www.scintilla.org).

Screenshots:

Look at: winxound.codeplex.com

Credits:
Many thanks for suggestions and debugging help to Roberto Doati, Gabriel Maldonado, Mark
Jamerson, Andreas Bergsland, Oeyvind Brandtsegg, Francesco Biasiol, Giorgio Klauer, Paolo Girol,



Francesco Porta, Eric Dexter, Menno Knevel, Joseph Alford, Panos Katergiathis, James Mobberley,
Fabio Macelloni, Giuseppe Silvi, Maurizio Goina, Andrés Cabrera, Peiman Khosravi, Rory Walsh and
Luis Jure.



50 BLUE

blue is a Java-based music composition environment for use with Csound. It provides higher level
abstractions such as a timeline, GUI-based instruments, score generating soundObjects like
pianoRolls, scripting, and more. It is available at:

http://blue.kunstmusik.com

(@

Cabbage is a software for prototyping and developing audio plugins with the Csound audio
synthesis language. It provides Csound programmers with a simple albeit powerful toolkit
for the development of cross-platform audio software. Pre-built binaries for Microsoft
Windows and Apple OSX(Built on OSX 10.6) are available from the Cabbage google code
homepage. You will also find a zipped archive of sample instruments.

This document will take you through the basics of using Cabbage. It starts with a look at
features provided by the host and then moves on to some simple examples. The text
concludes with a reference section for the various GUI controls available in Cabbage. It's
assumed that the reader has some prior knowledge of Csound.

In order to use Cabbage you MUST have Csound installed. Cabbage is only available for
the doubles version of Csound. This is the version that comes with the various installers so
there shouldn't be any problems. If however you build your own version of Csound and
don't build with the 'useDouble=1' options Cabbage will not work properly.

THE CABBAGE STANDALONE PLAYER



Cabbage Formant Synth 0 O
Formant Parameters One
CONC N0 M
Amp BW Rise Decay

Formant Parameters Two

Amp BW Rise Decay

Most prototyping will be done in the Cabbage standalone host. This host lets you load and
run Cabbage instruments, as seen in the screenshot above. Clicking on the options button
will give you access to the following commands:

Open Cabbage Instrument

Use this command to open a cabbage instrument(Unified Csound file with a dedicated
<Cabbage></Cabbage> section). You may open any .csd file you wish and add a Cabbage
section yourself once it's open. If opening existing Csound instrument you will need to use
the-n command line options to tell Csound not to open any audio devices, as these are
handled directly by Cabbage.

On OSX users can open .csd files contained within plugins. Just select
(_  a.vstfile instaed of a .csd file when opening. See the sections on
exporting plugins for more information.

New Cabbage...

This command will help you create a new Cabbage instrument/effect. Cabbage instruments
are synthesisers capable of creating sounds from scratch while effects process incoming
audio. Effects can access the incoming audio by using the inch or ins opcodes. All effects
have stereo inputs and stereo outputs. Instruments can access the incoming MIDI data in a
host of different ways but the easiest is to pipe the MIDI data directly to instrument p-fields
using the MIDI inter-op command line flags. Examples can be found in the examples folder.

The ctrl7 opcode doesn’t currently work so you should avoid using it in your
instruments. ctrl7 will be available in future versions

View Source Editor

This command will launch the integrated text editor. The text editor will always contain the
text which corresponds to the instrument that is currently open. Each time a file is saved in
the editor(Ctrl+S), Cabbage will automatically recompile the underlying Csound instrument
and update any changes that have been made to the instruments GUI. The editor also
features a Csound message console that can prove useful when debugging instruments.

Audio Settings

Clicking on the audio settings command will open the audio settings window. Here you can
choose your audio/MIDI input/output devices. You can also select the sampling rate and
audio buffer sizes. Small buffer sizes will reduce latency but might cause some clicks in the
audio. Keep testing buffer sizes until you find a setting that works best for your PC.

Cabbage hosts Csound instruments. It uses its own audio |0 callbacks
which will override any 10 settings specified in the <CsOptions> sections of
your Csound file.



Export...

This command will export your Cabbage instrument as a plugin.

Clicking synth or plugin will cause Cabbage to create a plugin file(with a .dll file extension)
into teh same directory as teh csd file you are using. When exporting as Cabbage will
prompt you to save your plugin in a set location, under a specific name. Once Cabbage has
created the plugin it will make a copy of the current .csd file and locate it in the same folder
as the plugin. This new .csd file will have the same name as the plugin and should ALWAYS
be in the same directory as the plugin.

You do not need to keep exporting instruments as plugins every time you
modify them. You need only modify the associated source code. To simplify
this task, Cabbage will automatically load the associated .csd file whenever
you export as a plugin. On OSX Cabbage can open a plugin’s .csd file
directly by selecting the plugin when prompted to select a file to open.

Always on Top

This command lets you toggle Always on top mode. By default it is turned on. This means
your Cabbage instrument will always appear on top of any other applications that are
currently open.

Update Instrument

This command updates Cabbage. This is useful if you decide to use another editor rather
the one provided. Just remember to save any changes made to your Cabbage instrument
before hitting update.

Batch Convert

This command will let you convert a selection of Cabbage .csd files into plugins so you
don’t have to manually open and export each one.

This feature is currently only available on Windows.

YOUR FIRST CABBAGE INSTRUMENTS

The following section illustrates the steps involved in building a simple Cabbage instrument.
It's assumed that the user has some prior knowledge of Csound. When creating a Cabbage
patch users must provide special xml-style tags at the top of a unified Csound file. The
Cabbage specific code should be placed between an opening <Cabbage> and a closing
</Cabbage> tag. You can create a new instrument by using the New Cabbage

Instrument menu command. Select either a synth or an effect and Cabbage will
automatically generate a basic template for you to work with.

Each line of Cabbage specific code relates to one graphical user interface(GUI) control only.
Lines must start with the type of GUI control you wish to use, i.e, vslider, button, xypad, etc.
Users then add identifiers to indicate how the control will look and behave. All parameters
passed to identifiers are either strings denoted with double quotes or numerical values.
Information on different identifiers and their parameters is given below in the reference
section. Long lines can be broken up with a | placed at the end of a line.

This section does not go into details about each Cabbage control, nor does
it show all available identifiers. Details about the various Cabbage controls
can be found in reference section below.

A basic Cabbage synthesiser

Code to create the most basic of Cabbage synthesisers is presented below. This instrument
uses the MIDI interop command line flags to pipe MIDI data directly to p-fields in instrument



1. In this case all MIDI pitch data is sent directly to p4, and all MIDI amplitude data is sent to
p5. MIDI data been sent on channel 1 will cause instrument 1 to play. Data being sent on
channel 2 will cause instrument 2 to play. It has been reported that the massign opcode
does not work as expected with Cabbage. This is currently under investigation.

<Cabbage>

form size(400, 120), caption("Simple Synth"), pluginID("plui")
keyboard bounds(0, ©, 380, 100)

</Cabbage>

<CsoundSynthesizer>

<CsOptions>

-n -d -+rtmidi=NULL -MO --midi-key-cps=4 --midi-velocity-amp=5
</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 64

nchnls = 2

0dbfs=1

instr 1

kenv linenr p5, 0.1, .25, 0.01
al oscil kenv*ki, p4, 1

outs a1, al

endin

</CsInstruments>
<CsScore>

f1 0 1024 10 1

fo 3600

</CsScore>
</CsoundSynthesizer>

You'll notice that a -n and -d are passed to Csound in the CsOptions
section. -n stops Csound from writing audio to disk. This must be used as
Cabbage manages its own audio IO callbacks. The -d prevents any FLTK
widgets from displaying. You will also notice that our instrument is stereo.
ALL Cabbage instruments operate in stereo.

Controlling your Cabbage patch

The most obvious limitation to the above instrument is that users cannot interact directly
with Csound. In order to do this one can use a Csound channel opcode and a Cabbage
control such as a slider. Any control that is to interact with Csound must have a channel
identifier.

When one supplies a channel name to the channel() identifier Csound will listen for data
being sent on that channel through the use of the named channel opcodes. There are a few
ways of retrieving data from the named channel bus in Csound, the most straightforward one
being the chnget opcode. It's defined in the Csound reference manual as:

Sname is the name of the channel. This same name must be passed to
the channel() identifier in the corresponding <Cabbage> section.

At present Cabbage only works with the chnget/chnset method of sending
and receiving channel data. invalue and outvalue won't work.

Our previous example can be modified so that a slider now controls the volume of our
oscillator.




In the example above we use a hslider control which is a horizontal slider. The bounds()
identifier sets up the position and size of the widget. The most important identifier is
channel("gain"). It is passed a string called gain. This is the same string we pass

to chnget in our Csound code. When a user moves the slider, the current position of the
slider is sent to Csound on a channel named "gain". Without the channel() identifier no
communication would take place between the Cabbage control and Csound. The above
example also uses a MIDI keyboard that can be used en lieu of a real MIDI keyboard when
testing plugins.

(Y

¢ [ 0.50]

A basic Cabbage effect

Cabbage effects are used to process incoming audio. To do so one must make sure they can
access the incoming audio stream. Any of Csound's signal input opcodes can be used for
this. The examples that come with Cabbage use both the ins and inch opcodes to retreive
the incoming audio signal. The following code is for a simple reverb unit. It accepts a stereo
input and outputs a stereo signal.

The above instrument uses 3 sliders to control

e the reverb size
¢ the cut-off frequency for the internal low-pass filters set up on the different delay lines
e overall gain.

The range() identifier is used with each slider to specify the min, max and starting value of
the sliders.



options Reverb ° ° a

Stereo Reverb

Size Cut-off Gain

If you compare the two score sections in the above instruments you'll notice
that the synth instrument doesn't use any i-statement. Instead it uses an f0
3600. This tells Csound to wait for 3600 seconds before exiting. Because
the instrument is to be controlled via MIDI we don’t need to use an i-
statement in the score. In the other example we use an i-statement with a
long duration so that the effect runs without stopping for a long time.

=

Exporting your instruments as plugins

Once you have created your instruments you will need to export them as plugins if you want
them to be seen by other host applications. When you export in Cabbage it will create a
plugin file that will have the same name as the csd file you are currently working on. In your
plugin host you will need to add the directory that contains your Cabbage plugins and csd
files.

In order to make future changes to the instrument you only need to edit the
associated .csd file. For instance, if you have a plugin called
"SavageCabbage.dll" and you wish to make some changes, you only have
to edit the corresponding "SavageCabbage.csd" file. In order to see the
changes in your plugin host you will need to delete and re-instantiate the
plugin from the track. Your changes will be seen once you re-instantiate the

plugin.

CABBAGE REFERENCE

Each and every Cabbage control has a numbers of possible identifiers that can be used to
tell Cabbage how it will look and behave. Identifiers with parameters enclosed in quote
marks must be passed a quoted string. Identifiers containing parameters without quotes
must be passed numerical values. All parameters except pos() have default values and are
therefore optional. In the reference tables below any identifiers enclosed in square brackets
are optional.

As pos() and size() are used so often they can be set in one go using the bounds() identifier:

bounds(x, y, width, height): bounds takes integer values that set position and size on
screen(in pixels)

Below is a list of the different GUI controls currently available in Cabbage. Controls can be
split into two groups, interactive controls and non-interactive controls. The non-interactive
controls such as group boxes and images don't interact in any way with either Csound or
plugin hosts. The interactive controls such as sliders and buttons do interact with Csound.
Each interactive control that one inserts into a Cabbage instrument will be accessible in a
plugin host if the instrument has been exported as a plugin. The name that appears beside
each native slider in the plugin host will be the assigned channel name for that control.

In order to save space in the following reference section bounds() will be
used instead of pos() and size() wherever applicable.

form caption("title"), size(Width, Height), pluginID("plug")

Form creates the main application window. pluginID() is the only required identifier. The
default values for size are 600x300.



caption: The string passed to caption will be the string that appears on the main
application window.

size(Width, Height):integer values denoted the width and height of the form.

pluginID("plug"): this unique string must be four characters long. Itis the ID given to
your plugin when loaded by plugin hosts.

Every plugin must have a unique pluginID. If two plugins share the same ID
there will be conflicts when trying to load them into a plugin host.

Example:

GroupBox

groupbox bounds(x, y, width, height), text("Caption")

Groupbox creates a container for other GUI controls. They do not communicate with Csound
but can be useful for organising widgets into panels.

bounds(x, y, width, height): integer values that set position and size on screen(in pixels)
text("caption"): "caption" will be the string to appear on the group box

Example:

Keyboard

Keyboard create a piano keyboard that will send MIDI information to your Csound
instrument. This component can be used together with a hardware controller. Pressing keys
on the actual MIDI keyboard will cause the on-screen keys to light up.

bounds(x, y, width, height): integer values that set position and size on screen(in pixels)

=

you can only use one MIDI keyboard component with each Cabbage
instrument. Also note that the keyboard can be played at different velocities
depending on where you click on the key with your mouse. Clicking at the
top of the key will cause a smaller velocity while clicking on the bottom will
cause the note to sound with full velocity. The keyboard control is only
provided as a quick and easy means of testing plugins in Cabbage. Treating
it as anything more than that could result in severe disappointment!

Example:

keyboard bounds(0, 0, 200, 100)



CsoundOutput

csoundoutput will let you view the Csound output console within your instrument’'s GUI,
useful when 'de-slugging'(debugging in Cabbage is known as de-slugging!) Cabbage
instruments.

bounds(x, y, width, height): integer values that set position and size on screen(in pixels)
text("name"): "name" will be the text that appears on the top of the check box.

Example:

Image creates a static shape or graphic. It can be used to show pictures or it can be used to
draw simple shapes. If you wish to display a picture you must pass the file name to the file()
identifier. The file MUST be in the same directory as your Cabbage instrument. If you simply
wish to draw a shape you can choose a background colour with colour() and an outline
colour with outline(). line() will let you determine the thickness of the outline.

bounds(x, y, width, height): integer values that set position and size on screen(in pixels)
file("filename"): "filename" is the name of the image to be displayed on the control

shape("type");: "shape" must be either "round"(with rounded corners, default), "sharp"(with
sharp corners), or "ellipse”(an elliptical shape)

colour("colour"): This sets the colour of the image if no file name is given with the file
identifier. Any CSS or HTML colour string can be passed to this identifier.

outline("colour"): This sets the outline colour of the image/shape. Any CSS or HTML
colour string can be passed to this identifier.

line(thickness): This sets the line thickness in pixels.

Example:



Sliders

Slider can be used to create an on-screen slider. Data can be sent to Csound on the
channel specified through the chanName string. Presented above is the syntax for a
horizontal slider, i.e., hslider. In order to change it to another slider type simple substitute
hslider with the appropriate identifier as outlined below.

bounds(x, y, width, height): integer values that set position and size on screen(in pixels)

channel("chanName"): "chanName" is the name of the channel upon which to
communicate with Csound(see examples above).

caption("caption"): This identifier lets you place your control within a groupbox. "caption”
is the text that will appear on groupbox. This identifier is useful for naming and containing
controls.

range(min, max, value, skew, incr): the first 2 parameters are required. The rest are
optional. The first two parameters let you set the minimum value and the maximum value.
The next parameter determines the initial value of the slider. The next allows you to adjust
the skew factor. Tweaking the skew factor can cause the slider to output values in a non
linear fashion. A skew of 0.5 will cause the slider to output values in an exponential fashion.
A skew of 1 is the default value, which causes the slider to behave is a typical linear form.

For the moment min must be less than max. In other words you can’tinvert
the slider. Also note that skew defaults to 1 when the slider is being
controlled by MIDI.

text("name"): The string passed in for "name" will appear on a label beside the slider. This
is useful for naming sliders.

textBox(on/off): textbox takes a 0 or a 1. 1 will cause a text box to appear with the sliders
values. Leaving this out will result in the numbers appearing automatically when you hover
over the sliders with your mouse.

midCtrl(channel, Ctrinum) : channel must be a valid midi channel, while controller num
should be the number of the controller you wish to use. This identifier only works when
running your instruments within the Cabbage standalone player.

colour("colour"): This sets the colour of the image if a file name is not passed to file. Any
CSS or HTML colour string can be passed to this identifier.

Slider types:

hslider: horizontal slider
vslider: vertical slider
rslider: rotary slider

Example:



Button

Button creates a button that can be used for a whole range of different tasks. The "channel”
string identifies the channel on which the host will communicate with Csound. "OnCaption"
and "OffCaption” determine the strings that will appear on the button as users toggle
between two states, i.e., 0 or 1. By default these captions are set to "On" and "Off" but the
user can specify any strings they wish. Button will constantly toggle between 0 and 1.

bounds(x, y, width, height): integer values that set position and size on screen(in pixels)

channel("chanName"): "chanName" is the name of the channel upon which to
communicate with Csound(see examples above).

caption("caption"): This identifier lets you place your control within a groupbox. "caption”
is the text that will appear on group box. This identifier is useful for naming and containing
controls.

text("offCaption", "onCaption"). The text identifier must be passed at least one string
argument. This string will be the one that will appear on the button. If you pass two strings to
text() the button will toggle between the two string each time it is pushed.

value(val): val sets the initial state of the control

Example:

CheckBox

Checkbox creates a checkbox which functions like a button only the associated caption will
not change when the user checks it. As with all controls capable of sending data to an
instance of Csound the channel string is the channel on which the control will communicate
with Csound.

channel("chanName"): "chanName" is the name of the channel upon which to
communicate with Csound(see examples above).

caption("caption"): This identifier lets you place your control within a groupbox. "caption"”
is the text that will appear on groupbox. This identifier is useful for naming and containing
controls.

text("name"): "name" will be the text that appears beside the checkbox.
value(val): val sets the initial state of the control

Example:



ComboBox

Combobox creates a drop-down list of items which users can choose from. Once the user
selects an item, the index of their selection will be sent to Csound on a channel named by
the channel string. The default value is 0.

bounds(x, y, width, height): integer values that set position and size on screen(in pixels)

channel("chanName"): "chanName" is the name of the channel upon which to
communicate with Csound(see examples above).

items("item1", "item2", etc): listofitems thatwill populate the combobox.
Each item has a corresponding index value. The first item when selected will send a 1, the
second item a 2, the third a 3 etc.

value(val): val sets the initial state of the control

caption("caption"): This identifier lets you place your control within a groupbox. "caption”
is the text that will appear on groupbox. This identifier is useful for naming and containing
controls.

Example:

Combo boxes are proving a little troublesome when used in plugin hosts.
We hope to resolve this issue shortly. In the mean time one can use a slider
and split it into different regions. Note that all GUI controls appear as sliders
when shown as native controls in a plugin host.

XYPad

xypad bounds(x, y, width, height), channel("chanName")[, rangex(min, max, val)\
rangey(min, max, val), text("name")]

xypad is an x/y controller that sends data to Csound on two named channels. The first
channel transmits the current position of the ball on the X axis, while the second transmits
the position of the ball on the Y axis. If you turn on automation via the checkbox located on
the bottom left of the xypad you can throw the ball from edge to edge. Once the ball is in full
flight you can control the speed of the ball using the XYpad slider.

bounds(x, y, width, height): integer values that set position and size on screen(in pixels)

channel("chanName"). "chanName" is the name of the channel in which to communicate
with Csound(see examples above).

text("name"): "name" will be the text that appears on the top right hand side of the XYpad
surface.

rangex(min, max, value): sets the range of the X axis. The first 2 parameters are required.
The third is optional. The first two parameters let you set the minimum value and the
maximum value. The next parameter determines the initial value.



rangey(min, max, value): sets the range of the Y axis. The first 2 parameters are required.
The third is optional. The first two parameters let you set the minimum value and the
maximum value. The next parameter determines the initial value.

Example:

QUICK REFERENCE

This quick reference table table gives a list of the valid identifiers for each Cabbage control.

ndoutput




TROUBLESHOOTING, FAQS, TIPS AND TRICKS

Why doesn’t my VST host see my Cabbage plugins? The most likely reason is
that you have not added the directory containing your plugins to your host's
preferences. Most hosts will allow you to choose the folders that contain plugins. If you
don’t set the Cabbage plugin directory then the host has no idea where your Cabbage
plugins are located.

Why doesn’t my Cabbage plugin load? The most likely reason a plugin will not
load is because there are errors in the Csound code. Cabbage plugins will load
regardless of errors in the Cabbage code, but errors in the Csound code will stop
Csound from compiling successfully and prevent the plugin from loading. Always make
sure that the Csound code is error free before exporting.

One mega plugin or several smaller ones? It's a good idea to split multi-effects
instruments into separate plugins. This allows greater modularity within you plugin
host and can often lead to less demand on your PC’s CPU.

Mixing effects and instruments? Adding an effect processor to a plugin instrument
might seem like a good idea. For instance you might add some reverb to the output of
your FM synth to create some nice presence. In general however itis best to keep
them separate. Plugin instruments demand a whole lot more CPU than their effects
siblings. Performance will be a lot smoother if you split the two processes up and
simply send the output of your synthesiser into an instance of a Cabbage reverb effect
plugin.

What’s up? My plugin makes a load of noise? If you have nchnls setto 1 thre will
be noise sent to the second, or right channel. Make sure that nchnls is ALWAYS set to
2! Also be careful when dealing with stereo input. If you try to access the incoming
signal on the right channel but you don't have any audio going to the right channel you
may experience some noise.

I can’t tell whether my sliders are controlling anything?! There will be times when
moving sliders or other interactive controls just doesn’'t do what you might expect. The
best way to de-slug Cabbage instruments is to use the printk2 opcode in Csound. For
instance if a slider is not behaving as expected make sure that Csound is receiving
data from the slider on the correct channel. Using the code below should print the
values of the slider to the Csound output console each time you move it. If not, then
you most likely have the wrong channel name set.

What gives? I've checked my channels and they are consistent, yet moving my
sliders does nothing? Believe it or not we have come across some cases of this
happening! In all cases it was due to the fact that the chosen channel name contained
a /. Please try to use plain old letters for your channel names. Avoid using any kind of
mathematical operators or fancy symbols and everything should be Ok.

Can l use nchnls to determine the number of output channels in my

plugin? Currently all Cabbage plugins are stereo by default. We are looking into ways
of making plugins multichannel but limitations in the VST SDK are proving to be a
stumbling block. It is something we are committed to finding a fix for.

Can luse Csound MACROs in the <Cabbage> section of my csd file? I'm afraid
not. The Cabbage section of your csd file is parsed by Cabbage’s own parser
therefore it will not understand any Csound syntax whatsoever.

I've built some amazing instruments, how do | share them with the world?! Easy.
Send me(rory walsh at ear dot ie), your instruments and | will add them to the
Cabbage examples so that other Cabbage users can have a go.

Last updated 2012-03-30 17:19:47 GMT Daylight Time



52 . CSOUND VIA TERMINAL

Whilst many of us now interact with Csound through one of its many front-ends which provide
us with an experience more akin the that of mainstream software, new-comers to Csound
should bear in mind that there was a time when the only way running Csound was from the
command line using the Csound command. In fact we must still run Csound in this way but front-
ends do this for us usually via some toolbar button or widget. Many people still prefer to interact
with Csound from a terminal window and feel this provides a more 'naked' and honest interfacing
with the program. Very often these people come from the group of users who have been using
Csound for many years, form the time before front-ends. It is still important for all users to be
aware of how to run Csound from the terminal as it provides a useful backup if problems
develop with a preferred front-end.

THE CSOUND COMMAND

The Csound command follows the format:

csound [performance_flags] [input_orc/sco/csd]

Executing 'csound' with no additional arguments will run the program but after a variety of
configuration information is printed to the terminal we will be informed that we provided
"insufficient arguments" for Csound to do anything useful. This action can still be valid for first
testing if Csound is installed and configured for terminal use, for checking what version is
installed and for finding out what performance flags are available without having to refer to the
manual.

Performance flags are controls that can be used to define how Csound will run. All of these flags
have defaults but we can make explicitly use flags and change these defaults to do useful things
like controlling the amount of information that Csound displays for us while running, activating a
MIDI device for input, or altering buffer sizes for fine tuning realtime audio performance. Even if
you are using a front-end, command line flags can be manipulated in a familiar format usually in
'settings' or 'preferences' menu. Adding flags here will have the same effect as adding them as
part of the Csound command. To learn more about Csound's command line flags it is best to
start on the page in the reference manual where they are listed and described by category.

Command line flags can also be defined within the <CsOptions> </CsOptions> part of a .csd file
and also in a file called .csoundrc which can be located in the Csound home program directory
and/or in the current working directory. Having all these different options for where esentially
the same information is stored might seem excessive but it is really just to allow flexibiliy in how
users can make changes to how Csound runs, depending on the situation and in the most
efficient way possible. This does however bring up one one issue in that if a particular command
line flag has been set in two different places, how does Csound know which one to choose? There
is an order of precedence that allows us to find out.

Beginning from its own defaults the first place Csound looks for additional flag options is in the
.csoundrc file in Csound's home directory, the next is in a .csoundrc file in the current working
directory (if it exists), the next is in the <CsOptions> of the .csd and finally the Csound
command itself. Flags that are read later in this list will overwrite earlier ones. Where flags have
been set within a front-end's options, these will normally overwrite any previous instructions for
that flag as they form part of the Csound command. Often a front-end will incorporate a check-
box for disabling its own inclusion of flag (without actually having to delete them from the
dialogue window).

After the command line flags (if any) have been declared in the Csound command, we provide
the name(s) of out input file(s) - originally this would have been the orchestra (.orc) and score
(.sco) file but this arrangement has now all but been replaced by the more recently introduced
.csd (unified orchestra and score) file. The facility to use a separate orchestra and score file
remains however.

For example:

Csound -d -W -osoundoutput.wav inputfile.csd



will run Csound and render the input .csd 'inputfile.csd' as a wav file ('-W' flag) to the file
'soundoutput.wav' (-o' flag). Additionally displays will be suppressed as dictated by the '-d' flag.
The input .csd file will need to be in the current working directory as no full path has been
provided. the output file will be written to the current working directory of SFDR if specified.



11 CSOUND UTILITIES

53. CSOUND UTILITIES



53. CSOUND UTILITIES

Csound comes bundled with a variety of additional utility applications. These are small programs
that perform a single function, very often with a sound file, that might be useful just before or
just after working with the main Csound program. Originally these were programs that were run
from the command line but many of Csound front-ends now offer direct access to many of
these utilities through their own utilities menus. It is useful to still have access to these programs
via the command line though, if all else fails.

The standard syntax for using these programs from the command line is to type the name of
the utility followed optionally by one or more command line flags which control various
performance options of the program - all of these will have useable defaults anyway - and finally
the name of the sound file upon which the utility will operate.

utility name [flag(s)] [file_name(s)]

If we require some help or information about a utility and don't want to be bothered hunting
through the Csound Manual we can just type the the utility's name with no additional arguments,
hit enter and the commmand line response will give us some information about that utility and
what command line flags it offers. We can also run the utility through Csound - perhaps useful if
there are problems running the utility directly - by calling Csound with the -U flag. The -U flag will
instruct Csound to run the utility and to interpret subsequent flags as those of the utility and
not its own.

Csound -U utility name [flag(s)] [file_name(s)]

SNDINFO

As an example of invoking one of these utilities form the command line we shall look at the
utility 'sndinfo' (sound information) which provides the user with some information about one or
more sound files. 'sndinfo' is invoked and provided with a file name thus:

sndinfo /Users/iainmccurdy/sounds/mysound.wav

If you are unsure of the file address of your sound file you can always just drag and drop it into
the terminal window. The output should be something like:

util sndinfo:
/Users/iainmccurdy/sounds/mysound.wav:

srate 44100, stereo, 24 bit WAV, 3.335 seconds
(147078 sample frames)

‘sndinfo’ will accept a list of file names and provide information on all of them in one go so it may
prove more efficient gleaning the same information from a GUI based sample editor. We also
have the advantage of begin able to copy and paste from the terminal window into a .csd file.

ANALYSIS UTILITIES

Although many of Csound's opcodes already operate upon commonly encountered sound file
formats such as ‘'wav' and 'aiff', a number of them require sound information in more specialised
and pre-analysed formats and for this Csound provides the sound analysis utilities atsa, cvanal
hetro, Ipanal and pvanal. By far the most commonly used of these is pvanal which, although
originally written to provide analysis files for pvoc and its generation of opcodes, has now been
extended to be able to generate files in the pvoc-ex (.pvx) format for use with the newer 'pvs'
streaming pvoc opcodes.

This time as well as requiring an input sound file for analysis we will need to provide a name (and
optionally the full address) for the output file. Using pvanal's command flags we can have full
control over typical FFT conversion parameters such as FFT size, overlap, window type etc. as
well as additional options that may prove useful such as the ability to select a fragment of a
larger sound file for the analysis. In the following illustration we shall make use of just one flag, -
s, for selecting which channel of the input sound file to analyse, all other flag values shall assume
their default values which should work fine in most situations.



pvanal -s1 mysound.wav myanalysis.pvx

pvanal will analyse the first (left if stereo) channel of the input sound file 'mysound.wav' (and in
this case as no full address has been provided it will need to be in either the current working
directory or SSDIR), and a name has been provided for the output file 'myanalysis.pvx’, which, as
no full address has been given, will be placed in the current working directory. While pvanal is
running it will print a running momentary and finally inform us once the process is complete.

If you use CsoundQT you can have direct access to pvanal with all its options through the
'utilities' button in the toolbar. Once opened it will reveal a dialogue window looking something
like this:

AQOD @ Csound Utilities
CWANAL HETRO  LPANAL | PVANAL | ATSA
pvanal
Input File Name Prow Analysis Flle Generation (ATSA, Nt
CVANAL, HETRO, LPANAL,

input.way = PVANAL)

Output File Name

outaut. pux - | pvanal

Sample Rate (-5} Overlap factor (-

pl— eitin o) pvanal — Converts a soundfile into a series of short-time

4 Fourier transform frames.

Channel (-¢) Window Description

1 von Hann {default) % Fourier analysis for the Csound pvoc generator

Begin Time (-b) Beta (-0)

s Syntax

0.0 6.4

Duration {-d) osound -U pvanal [flags] infilename outfilename
0.0 pvanal [flags] infilename outfilename

Frame size {-n) Pvanal extension to create a PVOC-EX fie.

1024 The standard Csound utility program pvanal has been

exténded to enable a PVOC-EX farmat file to be created, using o
'8 Reset Defaults RS Run PYANAL ") | the existing interface. To create a PVOC-EX file, the file name v
- = *  must be given the required extension, “.pvx", e.g “test.pvx".

Especially helpful is the fact that we are also automatically provided with pvanal's manual page.
FILE CONVERSION UTILITIES

The next group of utilities, het_import, het_export, pvlook, pv_export, pv_import, sdif2ad and
srconv facilitate file conversions between various types. Perhaps the most interesting of these
are pvlook, which prints to the terminal a formatted text version of a pvanal file - useful to
finding out exactly what is going on inside individual analysis bins, something that may be of use
when working with the more advanced resynthesis opcodes such as pvadd or pvsbin. srconv can
be used to convert the sample rate of a sound file.

MISCELLANEOUS UTILITIES

A final grouping gathers together various unsorted utilities: cs, csb64enc, envext, extractor,
makecsd, mixer, scale and mkdb. Most interesting of these are perhaps extractor which will
extract a user defined fragment of a sound file which it will then write to a new file, mixer which
mixes together any number of sound files and with gain control over each file and scale which
will scale the amplitude of an individual sound file.

It has been seen that the Csound utilities offer a wealth of useful, but often overlooked, tools to
augment our work with Csound. Whilst some of these utilities may seem redundant now that
most of us have access to fully featured 3rd-party sound editing software, it should be borne in
mind that many of these utilities were written in the 1980s and early 90s when such tools were
less readily available.
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54. THE CSOUND API

An application programming interface (API) is an interface provided by a computer

system, library or application that allows users to access functions and routines for a particular
task. It gives developers a way to harness the functionality of existing software within a

host application. The Csound API can be used to control an instance of Csound through a series
of different functions thus making it possible to harness all the power of Csound in one’s own
applications. In other words, almost anything that can be done within Csound can be done with
the APL. The APl is written in C, but there are interfaces to other languages as well, such as
Python, C++ and Java.

To use the Csound C AP, you have to include csound.h in your source file and to link your code
with libcsound. Here is an example of the csound command line application written using the
Csound C API:

#include <csound/csound.h>

int main(int argc, char **argv)
{
CSOUND *csound = csoundCreate(NULL);
int result = csoundCompile(csound, argc, argv);
if (result == 0) {
result = csoundPerform(csound);
}

csoundDestroy(csound);
return (result >= 0 ? 0 : result);

}

First we create an instance of Csound. To do this we call csoundCreate() which returns an
opaque pointer that will be passed to most Csound API functions. Then we compile the orc/sco
files or the csd file given as input arguments through the argv parameter of the main function. If
the compilation is successful (result == 0), we call the csoundPerform() function.
csoundPerform() will cause Csound to perform until the end of the score is reached. When
this happens csoundPerform() returns a non-zero value and we destroy our instance before
ending the program.

On a linux system, with libcsound named libcsound64 (double version of the csound library),
supposing that all include and library paths are set correctly, we would build the above example
with the following command:

gcc -DUSE_DOUBLE -o csoundCommand csoundCommand.c -lcsound64

The C API has been wrapped in a C++ class for convenience. This gives the Csound basic C++
API. With this API, the above example would become:

#include <csound/csound.hpp>

int main(int argc, char **argv)
{
Csound *cs = new Csound();
int result = cs->Compile(argc, argv);
if (result == 0) {
result = cs->Perform();

return (result >= 0 ? 0 : result);

}

Here, we get a pointer to a Csound object instead of the csound opaque pointer. We call
methods of this object instead of C functions, and we don't need to call csoundDestroy in the
end of the program, because the C++ object destruction mechanism takes care of this. On our
linux system, the example would be built with the following command:

g++ -DUSE_DOUBLE -0 csoundCommandCpp csoundCommand.cpp -lcsound64

The Csound API has also been wrapped to other languages. The Csound Python APl wraps the
Csound API to the Python language. To use this API, you have to import the csnd module. The
csnd module is normally installed in the site-packages or dist-packages directory of your python
distribution as a csnd.py file. Our csound command example becomes:

import sys



import csnd

def csoundCommand(args):
csound = csnd.Csound()
arguments = csnd.CsoundArgVList()
for s in args:
arguments.Append(s)
result = csound.Compile(arguments.argc(), arguments.argv())
if result == 0O:
result = csound.Perform()
return result

def main():
csoundCommand(sys.argv)

if __name__ =='__main__"':
main()

We use a Csound object (remember Python has OOp features). Note the use of the
CsoundArgVList helper class to wrap the program input arguments into a C++ manageable
object. In fact, the Csound class has syntactic sugar (thanks to method overloading) for the
Compile method. If you have less than six string arguments to pass to this method, you can pass
them directly. But here, as we don't know the number of arguments to our csound command,
we use the more general mechanism of the CsoundArgVList helper class.

The Csound Java APl wraps the Csound API to the Java language. To use this API, you have to
import the csnd package. The csnd package is located in the csnd.jar archive which has to be
known from your Java path. Our csound command example becomes:

import csnd.*;

public class CsoundCommand

{
private Csound csound = null;
private CsoundArgVList arguments = null;

public CsoundCommand(String[] args) {
csound = new Csound();
arguments = new CsoundArgVList();
arguments.Append("dummy");
for (int 1 = 0; i < args.length; i++) {
arguments.Append(args[i]);

int result = csound.Compile(arguments.argc(), arguments.argv());
if (result == 0) {
result = csound.Perform();

}
System.out.println(result);

public static void main(String[] args) {
CsoundCommand csCmd = new CsoundCommand(args);
}
}

Note the "dummy" string as first argument in the arguments list. C, C++ and Python expect that
the first argument in a program argv input array is implicitly the name of the calling program.
This is not the case in Java: the first location in the program argv input array contains the first
command line argument if any. So we have to had this "dummy" string value in the first location
of the arguments array so that the C API function called by our csound.Compile method is

happy.

This illustrates a fundamental point about the Csound APIl. Whichever APl wrapper is used (C++,
Python, Java, etc), it is the C APl which is working under the hood. So a thorough knowledge of
the Csound C APl is highly recommended if you plan to use the Csound APl in any of its different
flavours. The main source of information about the Csound C APl is the csound.h header file
which is fully commented.

On our linux system, with csnd.jar located in /usr/local/lib/csound/java, our Java Program would be
compiled and run with the following commands:

javac -cp /usr/local/lib/csound/java/csnd.jar CsoundCommand.java
java -cp /usr/local/lib/csound/java/csnd.jar:. CsoundCommand

There also exists an extended Csound C++ API, which adds to the Csound C++ APl a CsoundFile
class, the CsoundAC C++ API, which provides a class hierarchy for doing algorithmic composition



using Michael Gogins' concept of music graphs, and APl wrappers for the LISP, LUA and HASKELL
languages.

For now, this chapter chapter we will focus on the basic C/C++ API, and the Python and Java API.

THREADING

Before we begin to look at how to control Csound in real time we need to look at

threads. Threads are used so that a program can split itself into two or more simultaneously
running tasks. Multiple threads can be executed in parallel on many computer systems. The
advantage of running threads is that you do not have to wait for one part of your software to
finish executing before you start another.

In order to control aspects of your instruments in real time your will need to employ the use of
threads. If you run the first example found on this page you will see that the host will run for as
long as csoundPerform() returns 0. As soon as it returns non-zero it will exit the loop and
cause the application to quit. Once called, csoundPerform() will cause the program to hang
until it is finished. In order to interact with Csound while it is performing you will need to call
csoundPerform() in a separate unique thread.

When implementing threads using the Csound API, we must define a special performance function
thread. We then pass the name of this performance function to csoundCreateThread(),
thus registering our performance-thread function with Csound. When defining a Csound
performance-thread routine you must declare it to have a return type uintptr_t, hence it will
need to return a value when called. The thread function will take only one parameter, a pointer
to void. This pointer to void is quite important as it allows us to pass important data from the
main thread to the performance thread. As several variables are needed in our thread function
the best approach is to create a user defined data structure that will hold all the information
your performance thread will need. For example:

typedef struct{

/*result of csoundCompile()*/
int result;

/*instance of csound*/
CSOUND* csound;

/*performance status*/

bool PERF_STATUS;

}userData;

Below is a basic performance-thread routine. *data is cast as a userData data type so that
we can access its members.

uintptr_t csThread(void *data)

{
userData* udata = (userData*)data;
if(!udata->result)

while( (csoundPerformKsmps(udata->csound) == 0)&&
(udata->PERF_STATUS==1));
csoundDestroy(udata->csound);

}
udata->PERF_STATUS = 0;

return 1;

}

In order to start this thread we must call the csoundCreateThread() API function which is
declared in csound.h as:

void *csoundCreateThread(uintptr_t (*threadRoutine) (void *),void *userdata);

If you are building a command line program you will need to use some kind of mechanism to
prevent int main() from returning until after the performance has taken place. A simple while
loop will suffice.

The first example presented above can now be rewritten to include a unique performance
thread:

#include <stdio.h>
#include "csound.h"

uintptr_t csThread(void *clientData);



typedef struct {
int result;
CSOUND* csound;
int PERF_STATUS;
}userData;

int main(int argc, char *argv[])

{

void* ThreadID;

userData* ud;

ud = (userData *)malloc(sizeof(userData));
MYFLT* pvalue;

csoundInitialize(&argc, &argv, 0);
ud->csound=csoundCreate(NULL);
ud->result=csoundCompile(ud->csound,argc,argv);

if(lud->result) {
ud->PERF_STATUS=1;
ThreadID = csoundCreateThread(csThread, (void*)ud);

}
else{
return 0;

3

//keep performing until user presses enter
scanf("%d", &finish);

ud->PERF_STATUS=0;
csoundDestroy(ud->csound);

free(ud);

return 1;

}

//performance thread function
uintptr_t csThread(void *data)

{
userData* udata = (userData*)data;
if(!udata->result)
{
while( (csoundPerformKsmps(udata->csound) == 0) &&(udata->PERF_STATUS==1));
csoundDestroy(udata->csound);

}
udata->PERF_STATUS = 0;

return 1;

The application above might not appear all that interesting. In fact it's almost the exact same as
the first example presented except that users can now stop Csound by hitting 'enter'. The real
worth of threads can only be appreciated when you start to control your instrument in real
time.

Channel 1/O

The big advantage to using the APl is that it allows a host to control your Csound instruments in
real time. There are several mechanisms provided by the API that allow us to do this. The
simplest mechanism makes use of a 'software bus'.

The term bus is usually used to describe a means of communication between

hardware components. Buses are used in mixing consoles to route signals out of the mixing desk
into external devices. Signals get sent through the sends and are taken back into the

console through the returns. The same thing happens in a software bus, only instead of

sending analog signals to different hardware devices we send data to and from different
software.

Using one of the software bus opcodes in Csound we can provide an interface for communication
with a host application. An example of one such opcode is chnget. The chnget opcode reads data
that is being sent from a host Csound API application on a particular named channel, and assigns
it to an output variable. In the following example instrument 1 retrieves any data the host may
be sending on a channel named "pitch":

instr 1



kval chnget "pitch"

al oscil 10000, kval, 1
out al

endin

One way in which data can be sent from a host application to an instance of Csound is through
the use of the csoundGetChannelPtr() APl function which is defined in csound.h as:

int csoundGetChannelPtr(CSOUND *, MYFLT **p, const char *name,
int type);

CsoundGetChannelPtr() stores a pointer to the specified channel of the bus in p. The channe
pointer p is of type MYFLT. The argument name is the name of the channel and the argument
type is a bitwise OR of exactly one of the following values:

CSOUND_CONTROL_CHANNEL - control data (one MYFLT value)
CSOUND_AUDIO_CHANNEL - audio data (ksmps MYFLT values)
CSOUND_STRING_CHANNEL - string data (MYFLT values with enough space to

store csoundGetStrVarMaxLen(CSOUND*) characters, including the NULL character at the end of
the string)

and at least one of these:

CSOUND_INPUT_CHANNEL - when you need Csound to accept incoming values from a host
CSOUND_OUTPUT_CHANNEL - when you need Csound to send outgoing values to a host

If the call to csoundGetChannelPtr() is successful the function will return zero. If not, it will return
a negative error code. We can now modify our previous code in order to send data from our
application on a named software bus to an instance of Csound using csoundGetChannelPtr().

#include <stdio.h>
#include "csound.h"

//performance thread function prototype
uintptr_t csThread(void* clientData);

//userData structure declaration
typedef struct {

int result;

CSOUND* csound;

int PERF_STATUS;

}userData;

F R e e LT T T
// main function

Y e L LT T T T e
int main(int argc, char *argv[])

{

int userInput=200;

void* ThreadID;

userData* ud;

ud = (userData*)malloc(sizeof(userData));
MYFLT* pvalue;

csoundInitialize(&argc, &argv, 0);
ud->csound=csoundCreate(NULL);
ud->result=csoundCompile(ud->csound,argc,argv);
if(lud->result)

{
ud->PERF_STATUS=1;
ThreadID = csoundCreateThread(csThread, (void*)ud);

}

else{

printf("csoundCompiled returned an error");
return 0;

printf("\nEnter a pitch in
Hz(® to Exit) and type return\n");
while(userInput!=0)

if(csoundGetChannelPtr (ud->csound,
&pvalue, "pitch",
CSOUND_INPUT_CHANNEL

| CSOUND_CONTROL_CHANNEL)==0);
*pvalue =

(MYFLT)userInput;

scanf("%d",

&userInput);



ud->PERF_STATUS=0;
csoundDestroy(ud->csound);
free(ud);

return 1;

uintptr_t csThread(void *data)

userData* udata =(userData*)data;
if(!ludata->result)

while((csoundPerformKsmps(udata->csound)== 0)
&&(udata->PERF_STATUS==1));
csoundDestroy(udata->csound);

}
udata->PERF_STATUS = 0;
return 1;

}

SCORE EVENTS

Adding score events to the csound instance is easy to do. It requires that csound has its
threading done, see the paragraph above on threading. To enter a score event into csound, one
calls the following function:

void myInputMessageFunction( void* data, const char* message)

userData* udata = (userData*) data;
csoundInputMessage( udata->csound , message );

}

Now we can call that function to insert Score events into a running csound instance. The
formatting of the message should be the same as one would normally have in the Score part of
the .csd file. The example shows the format for the message. Note that if you're allowing csound
to print its error messages, if you send a malformed message, it will warn you. Good for
debugging. There's an example with the csound source code that allows you to type in a
message, and then it will send it.

instrNum start duration p4 p5 p6 Ca pN
const char* message = "i1l 0 1 0.5 0.3 0.1" ;
myInputMessageFunction( (void*) udata , message);

Callbacks
CONCLUSION
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55. USING PYTHON INSIDE CSOUND

coming in the next release ...

For now, have a look at Andrés Cabrera, Using Python inside Csound, An introduction to the
Python opcodes, Csound Journal Issue 6, Spring 2007:
http://www.csounds.com/journal/issue6/pythonOpcodes.html



56 C. PYTHON IN CSOUNDQT

coming in the next release ...

For now, you may want to have a look at Andrés Cabrera's paper Python Scripting in
QuteCsound at the Csound Conference in Hannover.



57 D. LUA IN CSOUND

coming in the next release ...

For now, have a look at Michael Gogins' paper Writing Csound Opcodes in Lua at the Csound
Conference in Hannover (there is also a video from the workshop at

www.youtube.com/user/csconf2011).
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58 . EXTENDING CSOUND

coming in the next release ...
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59 OPCODE GUIDE: OVERVIEW

If you run Csound from the command line with the option -z, you get a list of all opcodes.
Currently (Csound 5.13), the total number of all opcodes is about 1500. There are already

overviews of all of Csound's opcodes in the Opcodes Overview and the Opcode Quick Reference
of the Canonical Csound Manual.

This chapter is another attempt to provide some orientation within Csound's wealth of opcodes.
Unlike to the references mentioned above not all opcodes are listed, but the ones listed are
commented briefly. Some opcodes appear more than once, which is done intentionally, for
example, there are different contexts within which you might use the ftgen opcode and the
layout here reflects this multipurpose nature of a number of opcodes. This guide may also
provide insights into the opcodes listed that the other sources do not.

BASIC SIGNAL PROCESSING

o OSCILLATORS AND PHASORS
o Standard Oscillators

oscils) poscil poscil3 oscili oscil3 more

o Dynamic Sprectrum Oscillators

buzz gbuzz mpulse vco vco2

o Phasors

phasor syncphasor
« RANDOM AND NOISE GENERATORS

(seed) rand randi randh rnd31 random (randomi /randomh) pinkish more

« ENVELOPES

o Simple Standard Envelopes
linen linenr adsr madsr more

o Envelopes By Linear And Exponential Generators

linseg expseg transeg (linsegr expsegr transegr) more

o Envelopes By Function Tables
o DELAYS
o Audio Delays
vdelay vdelayx vdelayw
delayr delayw deltap deltapi deltap3 deltapx deltapxw deltapn_

o Control Delays

delk vdel k

e FILTERS



Compare Standard Filters and Specialized Filters overviews.
o Low Pass Filters

tone tonex butlp clfilt

o High Pass Filters

atone atonex buthp cfilt

o Band Pass And Resonant Filters

réson resonx resony resonr resonz butbp

o Band Reject Filters

areson butbr

o Filters For Smoothing Control Signals

port portk
¢ REVERB

(pconvolve) freeverb reverbsc reverb nreverb babo

o SIGNAL MEASUREMENT, DYNAMIC PROCESSING, SAMPLE LEVEL
OPERATIONS

o Amplitude Measurement And Following

rms balance follow follow?2 peak max_k
o Pitch Estimation
ptrack pitch pitchamdf pvscent

o Tempo Estimation

tempest

o Dynamic Processing
compress dam clip

o Sample Level Operations

limit samphold vaget vaset

e SPATIALIZATION

o Panning

pan2 pan
o VBAP

vbaplsinit vbap4 vbap8 vbapl6
o Ambisonics

bformencl bformdecl



o Binaural / HRTF

hrtfstat hrtfmove hrtfmove2 hrtfer

ADVANCED SIGNAL PROCESSING

e MODULATION AND DISTORTION

o Frequency Modulation

foscil foscili

crossfm crossfmi crosspm crosspmi crossfmpm crossfmpmi

o Distortion And Wave Shaping

distort distort] powershape polynomial chebyshevpoly

o Flanging, Phasing, Phase Shaping

flanger harmon phaserl phaser2 pdclip pdhalf pdhalfy

o Doppler Shift

doppler

 GRANULAR SYNTHESIS

partikkel others sndwarp

o CONVOLUTION

pconvolve ftconv dconv

o FFT AND SPECTRAL PROCESSING

o Realtime Analysis And Resynthesis

pvsanal pvstanal pvsynth pvsadsyn

(o]

Writing FFT Data To A File And Reading From It

pvsfwrite pvanal pvsfread pvsdiskin

o Writing FFT Data To A Buffer And Reading From It

pvsbuffer pvsbufread pvsftw pvsftr

FFT Info

o

pvsinfo pvsbin pvscent

o Manipulating FFT Signals

pvscale pvshift pvsbandp pvsbandr pvsmix pvscross pvsfilter pvsvoc pvsmorph
pvsfreeze pvsmaska pvsblur pvstencil pvsarp pvsmooth

e PHYSICAL MODELS AND FM INSTRUMENTS
o Waveguide Physical Modelling

see here and here



o FM Instrument Models

see here

DATA
o BUFFER / FUNCTION TABLES
o Creating Function Tables (Buffers)
ftgen GEN Routines
o Writing To Tables

tableiw /tablew  tabw i /tabw

o Reading From Tables

table /tablei /table3 tab i /tab

o Saving Tables To Files
ftsave / ftsavek TableToSF
o Reading Tables From Files
ftload / ftloadk  GEN23
o SIGNAL INPUT/OUTPUT, SAMPLE AND LOOP PLAYBACK, SOUNDFONTS
o Signal Input And Output

inch ; outch out outs ; monitor

o Sample Playback With Optional Looping

flooper2 sndloop

o Soundfonts And Fluid Opcodes

fluidEngine fluidSetinterpMethod fluidLoad fluidProgramSelect fluidNote fluidCCi
fluidCCk fluidControl fluidOut fluidAllQut

e FILE INPUT AND OUTPUT
o Sound File Input
o Sound File Queries

filelen filesr filenchnls filepeak filebit

o Sound File Output
fout
o Non-Soundfile Input And Output

readk GEN23 dumpk fprints / fprintks ftsave /ftsavek ftload / ftloadk




« CONVERTERS OF DATA TYPES
o i<-k
i(k)
o k<-a

downsamp max_k

o a<-k

upsamp interp
e PRINTING AND STRINGS

o Simple Printing
o Formatted Printing
o String Variables

sprintf sprintfk strset strget

o String Manipulation And Conversion
see here and here
REALTIME INTERACTION
« MIDI
o Opcodes For Use In MIDI-Triggered Instruments

massign pgmassign notnum cpsmidi veloc ampmidi midichn pchbend aftouch
polyaft

o Opcodes For Use In All Instruments

ctrl7 (ctrl4/ctrl21) initc7 ctrlinit (initc14/initc21) midiin midiout

o OPEN SOUND CONTROL AND NETWORK
o Open Sound Control
OSCinit OSClisten OSCsend
o Remote Instruments
remoteport insremot insglobal midiremot midiglobal
o Network Audio
socksend sockrecv
« HUMAN INTERFACES

o Widgets



FLTK overview here
o Keys

sensekey
o Mouse

xyin
o WII

wiiconnect wiidata wiirange wiisend

o P5 Glove
pSgeonnect pSgdata
INSTRUMENT CONTROL
+ SCORE PARAMETER ACCESS

p(x) pindex pset passign pcount

« TIME AND TEMPO
o Time Reading

times/timek  timeinsts/timeinstk date/dates setscorepos

o Tempo Reading
tempo miditempo tempoval
o Duration Modifications

ihold xtratim

o Time Signal Generators

metro mpulse

CONDITIONS AND LOOPS

changed trigger if loop_lt/loop_le/loop_gt/loop_ge

PROGRAM FLOW

init igoto kgoto timout reinit/rigoto/rireturn

EVENT TRIGGERING

event i /event scoreline i /scoreline schedkwhen seqtime /seqtime? timedseq

INSTRUMENT SUPERVISION

o Instances And Allocation

active maxalloc prealloc

o Turning On And Off



turnon _turnoff/turnoff2 mute remove exitnow

o Named Instruments

nstrnum

e SIGNAL EXCHANGE AND MIXING
o chn opcodes

chn k /chn a /chn S chnset chnget chnmix chnclear

o zak?

MATHS
o MATHEMATICAL CALCULATIONS
o Arithmetic Operations
+ - 2 [ 2%

abs(x) int(x) frac(x)
round(x) ceil(x) floor(x

o Trigonometric Functions

sin(x) cos(x) tan(x)
sinh(x) cosh(x) tanh(x)
sininv(x) cosinv(x) taninv(x) taninv2(x)

o Logic Operators
& |

o CONVERTERS

o MIDI To Frequency
cpsmidi cpsmidinn  more

o Frequency To MIDI
F2M F2MC (UDO's)

o Cent Values To Frequency
cent

o Amplitude Converters
ampdb ampdbfs dbamp dbfsamp
o Scaling

Scali Scalk Scala (UDQ's)




PYTHON AND SYSTEM

e PYTHON OPCODES

e SYSTEM OPCODES

getcfg system/system_i

PLUGINS

e PLUGIN HOSTING

o LADSPA
dssiinit dssiactivate dssilist dssiaudio dssictls

vstinit vstaudio/vstaudiog vstmidiout vstparamset/vstparamget yvstnote
vstinfo vstbankload vstprogset vstedit

o EXPORTING CSOUND FILES TO PLUGINS



60 OPCODE GUIDE: BASIC SIGNAL
PROCESSING

o OSCILLATORS AND PHASORS

o Standard Oscillators

oscils is a very simple sine oscillator which can be used for quick tests. It needs
no function table, but provides just i-rate arguments.

ftgen generates a function table, which is needed by any oscillator except oscils. The
GEN Routines fill the function table with any desired waveform, either a sine wave or
any other curve. Compare the function table chapter of this manual for more
information.

poscil can be recommended as standard oscillator because it is very precise also
for long tables and low frequencies. It provides linear interpolation, any rate for the
input arguments, and works also for non-power-of-two tables. poscil3 provides cubic
interpolation, but has just k-rate input. Other common oscillators are oscili and
oscil3. They are less precise than poscil/poscili, but you can skip the initialization
which can be useful in certain situations. The oscil opcode does not provide any
interpolation, so it should usually be avoided. More Csound oscillators can be found
here.

o Dynamic Spectrum Oscillators

buzz and gbuzz generate a set of harmonically related sine resp. cosine partials.

mpulse generates a set of impulses.

vco and vco2 implement band-limited, analog modeled oscillators with different
standard waveforms.

o Phasors

phasor produces the typical moving phase values between 0 and 1. The more
complex syncphasor lets you synchronize more than one phasor precisely.

- RANDOM AND NOISE GENERATORS

seed sets the seed value for the majority of the Csound random generators (seed 0
generates each time another random output, while any other seed value generates the
same random chain on each new run).

rand is the usual opcodes for bipolar random values. If you give 1 as input argument (called
"amp"), you will get values between -1 and +1. randi interpolates between values which are
generated in a (variable) frequency. randh holds the value until the next one is generated.
You can control the seed value by an input argument (a value greater than 1 seeds from
current time), you can decide whether to use a 16bit or a 31bit random number, and you
can add an offset.

rnd31 can be used for alle rates of variables (i-rate variables are not supported by rand). It
gives the user also control over the random distribution, but has no offset parameter.

random is often very convenient to use, because you have a minimum and a maximum
value as input argument, instead of a range like rand and rnd3]. It can also be used for all
rates, but you have no direct seed input, and the randomi/randomh variants always start
from the lower border, instead anywhere between the borders.



pinkish produces pink noise at audio-rate (white noise is produced by rand).

There are much more random opcodes. Here is an overview. It is also possible to use
some GEN Routines for generating random distributions. They can be found in the GEN
Routines overview.

« ENVELOPES

o Simple Standard Envelopes

linen applies a linear rise (fade in) and decay (fade out) to a signal. It is very easy to
use, as you put the raw audio signal in and get the enveloped signal out.

linenr does the same for any note which's duration is not fixed at the beginning, like
MIDI notes or any real time events. linenr begins to fade out exactly when the
instrument is turned off, adding an extra time after this turnoff.

adsr calculates the classical attack-decay-sustain-release envelope. The result is to
be multiplied with the audio signal to get the enveloped signal.

madsr does the same for a realtime note (like explained above for linenr).

Other standard envelope generators can be found in the Envelope Generators
overview of the Canonical Csound Manual.

o Envelopes By Linear And Exponential Generators
linseg creates one or more segments of lines between specified points.

expseg does the same with exponential segments. Note that zero values are illegal.

transeg is very flexible to use, because you can specify the shape of the curve for
each segment (continuous transitions from convex to linear to concave).

All these opcodes have a -r variant (linsegr, expsegr, transegr) for MIDI or other live
events.

More opcodes can be found in this overview.
o Envelopes By Function Tables

Any curve, or parts of it, of any function table, can be used as envelope. Just create
a function table by ftgen resp. by a GEN Routine. Then read the function table, or a
part of it, by an oscillator, and multiply the result with the audio signal you want to

envelope.

. DELAYS

o Audio Delays

The vdelay familiy of opcodes is easy to use and implement all necessary features
to work with delays:

vdelay implements a variable delay at audio rate with linear interpolation.
vdelay3 offers cubic interpolation.

vdelayx has an even higher quality interpolation (and is by this reason slower).
vdelayxs lets you input and output two channels, and vdelayxq four.

vdelayw changes the position of the write tap in the delay line instead of the read
tap. vdelayws is for stereo, and vdelaywq for quadro.

The delayr/delayw opcodes establishes a delay line in a more complicated way. The
advantage is that you can have as many taps in one delay line as you need.



delayr establishes a delay line and reads from it.
delayw writes an audio signal to the delay line.

deltap, deltapi, deltap3, deltapx and deltapxw are working similar to the relevant
opcodes of the vdelay family (see above).

deltapn offers a tap delay measured in samples, not seconds.

o Control Delays

instance as a kind of wait mode).

delk and vdel_k let you delay any k-signal by some time interval (usable for

« FILTERS

Csound has an extremely rich collection of filters and they are good available on the
Csound Manual pages for Standard Filters and Specialized Filters. So here some most
frequently used filters are mentioned, and some tips are given. Note that filters usually
change the signal level, so you will need the balance opcode.

o Low Pass Filters

tone is a first order recursive low pass filter. tonex implements a series of tone
filters.

butlp is a seond order low pass Butterworth filter.

clfilt lets you choose between different types and poles numbers.
o High Pass Filters

atone is a first order recursive high pass filter. atonex implements a series of atone
filters.

buthp is a second order high pass Butterworth filter.

clfilt lets you choose between different types and poles numbers.

o Band Pass And Resonant Filters

reson is a second order resonant filter. resonx implements a series of reson filters,
while resony emulates a bank of second order bandpass filters in parallel. resonr and
resonz are variants of reson with variable frequency response.

butbp is a second order band-pass Butterworth filter.
o Band Reject Filters

areson is the complement of the reson filter.

butbr is a band-reject butterworth filter.
o Filters For Smoothing Control Signals

port and portk are very frequently used to smooth control signals which are
received by MIDI or widgets.

« REVERB

Note that you can work easily in Csound with convolution reverbs based on impulse
response files, for instance with pconvolve.

freeverb is the implementation of Jezar's well-known free (stereo) reverb.



reverbsc is a stereo FDN reverb, based on work of Sean Costello.
reverb and nreverb are the traditional Csound reverb units.

babo is a physical model reverberator ("ball within the box").

« SIGNAL MEASUREMENT, DYNAMIC PROCESSING,
SAMPLE LEVEL OPERATIONS

o Amplitude Measurement And Following

rms determines the root-mean-square amplitude of an audio signal.

balance adjusts the amplitudes of an audio signal according to the rms amplitudes of
another audio signal.

follow / follow2 are envelope followers which report the average amplitude in a
certain time span (follow) or according to an attack/decay rate (follow?2).

peak reports the highest absolute amplitude value received.

max_k outputs the local maximum or minimum value of an incoming audio signal,
checked in a certain time interval.

o Pitch Estimation

ptrack, pitch and pitchamdf track the pitch of an incoming audio signal, using
different methods.

pvscent calculates the spectral centroid for FFT streaming signals (see below under
"FFT And Spectral Processing")

o Tempo Estimation
tempest estimates the tempo of beat patterns in a control signal.
o Dynamic Processing

compress compresses, limits, expands, ducks or gates an audio signal.

dam is a dynamic compressor/expander.

clip clips an a-rate signal to a predefined limit, in a “soft” manner.
o Sample Level Operations

limit sets the lower and upper limits of an incoming value (all rates).
samphold performs a sample-and-hold operation on its a- or k-input.

vaget / vaset allow getting and setting certain samples of an audio vector at k-rate.

« SPATIALIZATION

o Panning

pan2 distributes a mono audio signal across two channels, with different envelope
options.

pan distributes a mono audio signal amongst four channels.
o VBAP

vbaplsinit configures VBAP output according to loudspeaker parameters for a 2- or
3-dimensional space.



vbap4 / vbap8 / vbap16 distributes an audio signal among up to 16 channels, with k-
rate control over azimut, elevation and spread.

Ambisonics

bformencl encodes an audio signal to the Ambisonics B format.

bformdecl decodes Ambisonics B format signals to loudspeaker signals in different
possible configurations.

Binaural / HRTF

hrtfstat, hrtfmove and hrtfmove?2 are opcodes for creating 3d binaural audio for
headphones. hrtfer is an older implementation, using an external file.
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- MODULATION AND DISTORTION

o Frequency Modulation
foscil and foscili implement composite units for FM in the Chowning setup.

crossfm, crossfmi, crosspm, crosspmi, crossfmpm and crossfmpmi are
different units for frequency and/or phase modulation.

o Distortion And Wave Shaping

distort and distortl perform waveshaping by a function table (distort) or by modified
hyperbolic tangent distortion (distort1).

powershape waveshapes a signal by raising it to a variable exponent.
polynomial efficiently evaluates a polynomial of arbitrary order.

chebyshevpoly efficiently evaluates the sum of Chebyshev polynomials of arbitrary
order.

GENO3, GEN13, GEN14 and GEN15 are also used for Waveshaping.

o Flanging, Phasing, Phase Shaping
flanger implements a user controllable flanger.
harmon analyzes an audio input and generates harmonizing voices in synchrony.

phaserl and phaser2 implement first- or second-order allpass filters arranged in a
series.

pdclip, pdhalf and pdhalfy are useful for phase distortion synthesis.
o Doppler Shift

doppler lets you calculate the doppler shift depending on the position of the sound
source and the microphone.

« GRANULAR SYNTHESIS

partikkel is the most flexible opcode for granular synthesis. You should be able to do
everything you like in this field. The only drawback is the large number of input arguments,
so you may want to use other opcodes for certain purposes.

You can find a list of other relevant opcodes here.

sndwarp focusses granular synthesis on time stretching and/or pitch modifications.
Compare waveset and the pvs-opcodes pvsfread, pvsdiskin, pvscale, pvshift for other
implementations of time and/or pitch modifications.

« CONVOLUTION

pconvolve performs convolution based on a uniformly partitioned overlap-save algorithm.

ftconv is similar to pconvolve, but you can also use parts of the impulse response file,




instead of reading the whole file.

dconv performs direct convolution.
« FFT AND SPECTRAL PROCESSING

o Realtime Analysis And Resynthesis

pvsanal performs a Fast Fourier Transformation of an audio stream (a-signal) and
stores the result in an f-variable.

pvstanal creates an f-signal directly from a sound file which is stored in a function
table (usually via GENOT).

pvsynth performs an Inverse FFT (takes a f-signal and returns an audio-signal).

pvsadsyn is similar to pvsynth, but resynthesizes with a bank of oscillators, instead
of direct IFFT.

o Writing FFT Data To A File And Reading From It

pvsfwrite writes an f-signal (= the FFT data) from inside Csound to a file. This file
has the PVOCEX format and its name ends on .pvx.

pvanal does actually the same as Csound Utility (a seperate program which can be
called in QuteCsound or via the Terminal). In this case, the input is an audio file.

pvsfread reads the FFT data from an extisting .pvx file. This file can be generated
by the Csound Utility pvanal. Reading the file is done by a time pointer.

pvsdiskin is similar to pvsfread, but reading is done by a speed argument.
o Writing FFT Data To A Buffer And Reading From It

pvsbuffer writes a f-signal to a circular buffer (and creates it).
pvsbufread reads a f-signal from a buffer which was created by pvsbuffer.
pvsftw writes amplitude and/or frequency data from a f-signal to a function table.

pvsftr transforms amplitude and/or frequency data from a function table to a f-
signal.

o FFT Info
pvsinfo gets info either from a realtime f-signal or from a .pvx file.
pvsbin gets the amplitude and frequency values from a single bin of a f-signal.

pvscent calculates the spectral centroid of a signal.
o Manipulating FFT Signals

pvscale transposes the frequency components of a f-stream by simple
multiplication.

pvshift changes the frequency components of a f-stream by adding a shift value,
starting at a certain bin.

pvsbandp and pvsbandr applies a band pass and band reject filter to the frequency
components of a f-signal.

pvsmix, pvscross, pvsfilter, pvsvoc and pvsmorph perform different methods of
cross synthesis between two f-signals.

pvsfreeze freezes the amplitude and/or frequency of a f-signal according to a k-rate
trigger.



pvsmaska, pvsblur, pvstencil, pvsarp, pvsmooth perform other manipulations on
a stream of FFT data.

« PHYSICAL MODELS AND FM INSTRUMENTS

o Waveguide Physical Modelling
see here and here
o FM Instrument Models

see here
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« BUFFER / FUNCTION TABLES

See the chapter about function tables for more detailled information.
o Creating Function Tables (Buffers)

ftgen generates any function table. The GEN Routines are used to fill a function
table with different kind of data, like soundfiles, envelopes, window functions and
much more.

o Writing To Tables

tableiw /

tablew: Write values to a function table at i-rate (tableiw), k-rate and a-rate
(tablew). These opcodes provide many options and are safe because of boundary
check, but you may have problems with non-power-of-two tables.

tabw_i / tabw: Write values to a function table at i-rate (tabw_i), k-rate or a-rate
(tabw). Offer less options than the tableiw/tablew opcodes, but work also for non-
power-of-two tables. They do not provide a boundary check, which makes them fast
but also give the user the resposability not writing any value off the table
boundaries.

o Reading From Tables

table / tablei / table3: Read values from a function table at any rate, either by
direct indexing (table), or by linear (tablei) or cubic (table3) interpolation. These
opcodes provide many options and are safe because of boundary check, but you
may have problems with non-power-of-two tables.

tab_i / tab: Read values from a function table at i-rate (tab_i), k-rate or a-rate (tab).
Offer no interpolation and less options than the table opcodes, but they work also
for non-power-of-two tables. They do not provide a boundary check, which makes
them fast but also give the user the resposability not reading any value off the table
boundaries.

o Saving Tables To Files

ftsave / ftsavek: Save a function table as a file, at i-time (ftsave) or k-time
(ftsavek). This can be a text file or a binary file, but not a soundfile. If you want to
save a soundfile, use the User Defined Opcode TableToSF.

o Reading Tables From Files
ftload / ftloadk: Load a function table which has been written by ftsave/ftsavek.

GEN23 transfers a text file into a function table.

« SIGNAL INPUT/OUTPUT, SAMPLE AND LOOP PLAYBACK,
SOUNDFONTS

o Signal Input And Output

inch read the audio input from any channel of your audio device. Make sure you
have the nchnls value in the orchestra header set properly.

outch writes any audio signal(s) to any output channel(s). If Csound is in realtime
mode (by the flag -0 dac' or by the '‘Render in Realtime' mode of a frontend like



QuteCsound), the output channels are the channels of your output device. If Csound
is in 'Render to file' mode (by the flag '-o mysoundfile.wav' or the the frontend's
choice), the output channels are the channels of the soundfile which is being written.
Make sure you have the nchnls value in the orchestra header set properly to get the
number of channels you wish to have.

out and outs are frequently used for mono and stereo output. They always write to
channel 1 (out) resp. 1 and 2 (outs).

monitor can be used (in an instrument with the highest number) to get the sum of
all audio on the different output channels.

o Sample Playback With Optional Looping

flooper2 is a function-table-based crossfading looper.

sndloop records input audio and plays it back in a loop with user-defined duration
and crossfade time.

Note that there are also User Defined Opcodes for sample playback of buffers /
function tables.

o Soundfonts And Fluid Opcodes

fluidEngine instantiates a FluidSynth engine.

fluidSetInterpMethod sets an interpolation method for a channel in a FluidSynth
engine.

fluidLoad loads SoundFonts.

fluidProgramSelect assigns presets from a SoundFont to a FluidSynth engine's MIDI
channel.

fluidNote plays a note on a FluidSynth engine's MIDI channel.

fluidCCi sends a controller message at i-time to a FluidSynth engine's MIDI channel.
fluidCCk sends a controller message at k-rate to a FluidSynth engine's MIDI channel.
fluidControl plays and controls loaded Soundfonts (using 'raw' MIDI messages).
fluidOut receives audio from a single FluidSynth engine.

fluidAllOut receives audio from all FluidSynth engines.

 FILE INPUT AND OUTPUT

o Sound File Input

soundin reads from a soundfile (up to 24 channels). Make sure that the sr value in
the orchestra header matches the sample rate of your soundfile, or you will get
higher or lower pitched sound.

diskin is like soundin, but can also alter the speed of reading (resulting in higher or
lower pitches) and you have an option to loop the file.

diskin2 is like diskin, but automatically converts the sample rate of the soundfile if
it does not match the sample rate of the orchestra, and it offers different
interpolation methods for reading the soundfile at altered speed.

GENO1 reads soundfile into a function table (buffer).

mp3in lets you play mp3 sound files.

o Sound File Queries



filelen returns the length of a soundfile in seconds.
filesr returns the sample rate of a soundfile.
filenchnls returns the number of channels of a soundfile.

filepeak returns the peak absolute value of a soundfile, either of one specified
channel, or from all channels. Make sure you have set 0dbfs to 1; otherwise you will
get values relative to Csound's default Odbfs value of 32768.

filebit returns the bit depth of a soundfile.

o Sound File Output

Keep in mind that Csound always writes output to a file if you have set the '-o' flag
to the name of a soundfile (or if you choose 'render to file' in a frontend like
QuteCound).

fout writes any audio signal(s) to a file, regardless Csound is in realtime or render-to-
file mode. So you can record your live performance with this opcode.

o Non-Soundfile Input And Output

readk can read data from external files (for instance a text file) and transform them
to k-rate values.

GEN23 transfers a text file into a function table.
dumpk writes k-rate signals to a text file.

fprints / fprintks write any formatted string to a file. If you call this opcode several
times during one performance, the strings are appended. If you write to an already
existing file, the file will be overwritten.

ftsave / ftsavek: Save a function table as a binary or text file, in a specific format.

ftload / ftloadk: Load a function table which has been written by ftsave/ftsavek.

« CONVERTERS OF DATA TYPES
o i<-k

i(k) returns the value of a k-variable at init-time. This can be useful to get the value
of GUI controllers, or when using the reinit feature.

o k<-a
downsamp converts an a-rate signal to a k-rate signal, with optional averaging.

max_k returns the maximum of an a-rate signal in a certain time span, with
different options of calculation

o a<-k

upsamp converts a k-rate signal to an a-rate signal by simple repetitions. It is the
same as the statement asig=ksig.

interp converts a k-rate signal to an a-rate signal by interpolation.
« PRINTING AND STRINGS

o Simple Printing

print is a simple opcode for printing i-variables. Note that the printed numbers are
rounded to 3 decimal places.



printk is its counterpart for k-variables. The itime argument specifies the time in
seconds between printings (itime=0 means one printout in each k-cycle which is
usually some thousand printings per second).

printk2 prints a k-variable whenever it has changed.

puts prints S-variables. The ktrig argument lets you print either at i-time or at k-
time.

Formatted Printing

prints lets you print a format string at i-time. The format is similar to the C-style
syntax (verweis). There is no %s format, therefore no string variables can be
printed.

printf_i is very similar to prints. It also works at init-time. The advantage in
comparision to prints is the ability of printing string variables. On the other hand,
you need a trigger and at least one input argument.

printks is like prints, but takes k-variables, and like at printk you must specify a
time between printing.

printf is like printf_i, but works at k-rate.
String Variables

sprintf works like printf_i, but stores the output in a string variable, instead of
printing it out.

sprintfk is the same for k-rate arguments.

strset links any string with a numeric value.

strget transforms a strset number back to a string.
String Manipulation And Conversion

There are many opcodes for analysing, manipulating and conversing strings. There is
a good overview in the Canonical Csound Manual on this and that page.
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- MIDI

o Opcodes For Use In MIDI-Triggered Instruments

massign assigns certain midi channels to instrument numbers. See the Triggering
Instrument Instances chapter for more information.

pgmassign assigns certain program changes to instrument numbers.

notnum gets the midi number of the key which has been pressed and activated this
instrument instance.

cpsmidi converts this note number to the frequency in cycles per second (Hertz).

veloc and ampmidi get the velocity of the key which has been pressed and
activated this instrument instance.

midichn returns the midi channel number from which the note was activated.
pchbend gets the pitch bend information.
aftouch and polyaft get the aftertouch information.

o Opcodes For Use In All Instruments

ctrl7 gets the values of a usual (7bit) controller and scales it. ctrll4 and ctrl21 can be
used for high definition controllers.

initc7 or ctrlinit set the initial value of 7bit controllers. Use initcl4 and initc21 for
high definition devices.

midiin gives access to all incoming midi events.

midiout writes any event to the midi out port.
« OPEN SOUND CONTROL AND NETWORK

o Open Sound Control
OSCinit initializes a port for later use of the OSClisten opcode.
OSClisten receives messages of the port which was initialized by OSCinit.
OSCsend sends messages to a port.

o Remote Instruments
remoteport defines the port for use with the remote system.
insremot will send note events from a source machine to one destination.
insglobal will send note events from a source machine to many destinations.
midiremot will send midi events from a source machine to one destination.

midiglobal will broadcast the midi events to all the machines involved in the remote
concert.

o Network Audio



socksend sends audio data to other processes using the low-level UDP or TCP
protocols.

sockrecv receives audio data from other processes using the low-level UDP or TCP
protocols.

« HUMAN INTERFACES

o Widgets

The FLTK Widgets are integrated in Csound. Information and examples can be found
here.

QuteCsound implements a more modern and easy-to-use system for widgets. The
communication between the widgets and Csound is done via invalue (or chnget) and
outvalue (or chnset).

o Keys
sensekey gets the input of your computer keys.
o Mouse

xyin can get the mouse position if your front-end does not provide this sensing
otherwise.

o WII

wiiconnect reads data from a number of external Nintendo Wiimote controllers.
wiidata reads data fields from a number of external Nintendo Wiimote controllers.
wiirange sets scaling and range limits for certain Wiimote fields.

wiisend sends data to one of a number of external Wii controllers.
o P5 Glove

p5gconnect reads data from an external P5 Glove controller.

p5gdata reads data fields from an external P5 Glove controller.
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« SCORE PARAMETER ACCESS

p(x) gets the value of a specified p-field. (So, 'p(5)' and 'p5' both return the value of the
fifth parameter in a certain score line, but in the former case you can insert a variable to
specify the p-field.

pindex does actually the same, but as an opcode instead of an expression.
pset sets p-field values in case there is no value from a scoreline.
passign assigns a range of p-fields to i-variables.

pcount returns the number of p-fields belonging to a note event.
. TIME AND TEMPO

o Time Reading

times / timek return the time in seconds (times) or in control cycles (timek) since
the start of the current Csound performance.

timeinsts / timeinstk return the time in seconds (timeinsts) or in control cycles
(timeinstk) since the start of the instrument in which they are defined.

date / dates return the number of seconds since 1 January 1970, using the operating
system's clock; either as a number (date) or as a string (dates).

setscorepos sets the playback position of the current score performance to a given
position.

o Tempo Reading

tempo allows the performance speed of Csound scored events to be controlled from
within an orchestra.

miditempo returns the current tempo at k-rate, of either the midi file (if available)
or the score.

tempoval reads the current value of the tempo.
o Duration Modifications

ihold causes a finite-duration note to become a 'held' note.

xtratim extend the duration of the current instrument instance.

o Time Signal Generators
metro outputs a metronome-like control signal in a variable frequency.

mpulse generates an impulse for one sample (as audio-signal), followed by a variable
time span.

« CONDITIONS AND LOOPS

changed reports whether a k-variable (or at least one of some k-variables) has changed.

trigger informs whether a k-rate signal crosses a certain threshold.



if branches conditionally at initialization or during performance time.

loop_lIt, loop_le, loop_gt and loop_ge perform loops either at i- or k-time.
« PROGRAM FLOW

init initializes a k- or a-variable (assigns a value to a k- or a-variable which is valid at i-
time).

igoto jumps to a label at i-time.
kgoto jumps to a label at k-time.

timout jumps to a label for a given time. Can be used in conjunction with reinit to perform
time loops (see the chapter about Control Structures for more information).

reinit / rigoto / rireturn forces a certain section of code to be reinitialized (= i-rate
variables are renewed).

« EVENT TRIGGERING

event_i / event: Generate an instrument event at i-time (event_i) or at k-time (event).
Easy to use, but you cannot send a string to the subinstrument.

scoreline_i / scoreline: Generate an instrument at i-time (scoreline_i) or at k-time
(scoreline). Like event_i/event, but you can send to more than one instrument but unlike
event_i/event you can send strings. On the other hand, you must usually preformat your
scoreline-string using sprintf.

schedkwhen triggers an instrument event at k-time if a certain condition is given.

seqtime / seqtime2 can be used to generate a trigger signal according to time values in a
function table.

timedseq is an event-sequencer in which time can be controlled by a time-pointer.
Sequence data are stored into a table.

« INSTRUMENT SUPERVISION

o Instances And Allocation

active returns the number of active instances of an instrument.

maxalloc limits the number of allocations (instances) of an instrument.

prealloc creates space for instruments but does not run them.
o Turning On And Off
turnon activates an instrument for an indefinite time.

turnoff / turnoff2 enables an instrument to turn itself, or another instrument, off.

mute mutes/unmutes new instances of a given instrument.

remove removes the definition of an instrument as long as it is not in use.

exitnow exits csound as fast as possible, with no cleaning up.
o Named Instruments

nstrnum returns the number of a named instrument.

« SIGNAL EXCHANGE AND MIXING



o chn opcodes

chn_k, chn_a, and chn_S declare a control, audio, or string channel. Note that this
can be done implicitely in most cases by chnset/chnget.

chnset writes a value (i, k, S or a) to a software channel (which is identified by a
string as its name).

chnget gets the value of a named software channel.
chnmix writes audio data to an named audio channel, mixing to the previous output.

chnclear clears an audio channel of the named software bus to zero.

o zak
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MATH
« MATHEMATICAL CALCULATIONS

o Arithmetic Operations

+, - * [, % are the usual signs for addition, subtraction, multiplication, division,
raising to a power and modulo. The precedence is like in common mathematics (a "*"
binds stronger than "+" etc.), but you can change this behaviour with parentheses:
27~(112) returns 2 raised by 1/12 (= the 12st root of 2), while 2*1/12 returns 2 raised
by 1, and the result divided by 12.

exp(x), log(x), log10(x) and sqrt(x) return e raised to the xth power, the natural log

of x, the base 10 log of x, and the square root of x.
abs(x) returns the absolute value of a number.
int(x) and frac(x) return the integer respective the fractional part of a number.

round(x), ceil(x), floor(x) round a number to the nearest, the next higher or the
next lower integer.

o Trigonometric Functions
sin(x), cos(x), tan(x) perform a sine, cosine or tangent function.
sinh(x), cosh(x), tanh(x) perform a hyperbolic sine, cosine or tangent function.

sininv(x), cosinv(x), taninv(x) and taninv2(x) perform the arcsine, arccosine and

arctangent functions.
o Logic Operators
&& and || are the symbols for a logical "and" respective "or". Note that you can use

here parentheses for defining the precedence, too, for instance: if (ivall <10 && ival2
> 5) || (ivall > 20 && ival2 < 0) then ...

- CONVERTERS

o MIDI To Frequency

cpsmidi converts a MIDI note number from a triggered instrument to the frequency
in Hertz.

cpsmidinn does the same for any input values (i- or k-rate).

Other opcodes convert to Csonund's pitch- or octave-class system. They can be
found here.

o Frequency To MIDI

Csound has no own opcode for the conversion of a frequency to a midi note number,
because this is a rather simple calculation. You can find a User Defined Opcode for
rounding to the next possible midi note number or for the exact translation to a midi
note number and a cent value as fractional part.

o Cent Values To Frequency



cent converts a cent value to a multiplier. For instance, cent(1200) returns 2,
cent(100) returns 1.059403. If you multiply this with the frequency you reference to,
you get frequency of the note which corresponds to the cent interval.

o Amplitude Converters

ampdb returns the amplitude equivalent of the dB value. ampdb(0) returns 1,
ampdb(-6) returns 0.501187, and so on.

ampdbfs returns the amplitude equivalent of the dB value, according to what has
been set as Odbfs (1 is recommended, the default is 15bit = 32768). So ampdbfs(-6)
returns 0.501187 for Odbfs=1, but 16422.904297 for 0dbfs=32768.

dbamp returns the decibel equivalent of the amplitude value, where an amplitude of
1'is the maximum. So dbamp(1) -> 0 and dbamp(0.5) -> -6.020600.

dbfsamp returns the decibel equivalent of the amplitude value set by the Odbfs

statement. So dbfsamp(10) is 20.000002 for 0dbfs=0 but -70.308998 for
0dbfs=32768.

o Scaling
Scaling of signals from an input range to an output range, like the "scale" object in

Max/MSP, is not implemented in Csound, because it is a rather simple calculation. It is
available as User Defined Opcode: Scali (i-rate), Scalk (k-rate) or Scala (a-rate).

PYTHON AND SYSTEM

« PYTHON OPCODES

pyinit initializes the Python interpreter.

pyrun runs a Python statement or block of statements.

pyexec executes a script from a file at k-time, i-time or if a trigger has been received.
pycall invokes the specified Python callable at k-time or i-time.

pyeval evaluates a generic Python expression and stores the result in a Csound k- or i-
variable, with optional trigger.

pyassign assigns the value of the given Csound variable to a Python variable possibly
destroying its previous content.

« SYSTEM OPCODES

getcfg returns various Csound configuration settings as a string at init time.

system / system_i call an external program via the system call.

PLUGINS
« PLUGIN HOSTING

o LADSPA

dssiinit loads a plugin.
dssiactivate activates or deactivates a plugin if it has this facility.

dssilist lists all available plugins found in the LADSPA_PATH and DSSI_PATH global
variables.



dssiaudio processes audio using a plugin.

dssictls sends control information to a plugin's control port.
VST

vstinit loads a plugin.

vstaudio / vstaudiog return a plugin's output.
vstmidiout sends midi data to a plugin.

vstparamset / vstparamget sends and receives automation data to and from the
plugin.

vstnote sends a midi note with a definite duration.

vstinfo outputs the parameter and program names for a plugin.
vstbankload loads an .fxb bank.

vstprogset sets the program in a .fxb bank.

vstedit opens the GUI editor for the plugin, when available.
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66 - GLOSSARY

control cycle, control period or k-loop is a pass during the performance of an instrument, in
which all k- and a-variables are renewed. The time for one control cycle is measured in samples
and determined by the ksmps constant in the orchestra header. If your sample rate is 44100
and your ksmps value is 10, the time for one control cycle is 1/4410 = 0.000227 seconds. See the
chapter about Initialization And Performance Pass for more information.

control rate or k-rate (kr) is the number of control cycles per second. It can be calculated as
the relationship of the sample rate sr and the number of samples in one control period ksmps. If
your sample rate is 44100 and your ksmps value is 10, your control rate is 4410, so you have
4410 control cycles per second.

dummy f-statement see f-statement

f-statement or function table statement is a score line which starts with a "f" and generates
a function table. See the chapter about function tables for more information. A dummy f-
statement is a statement like "f 0 3600" which looks like a function table statement, but
instead of generating any table, it serves just for running Csound for a certain time (here 3600
seconds = 1 hour).

FFT Fast Fourier Transform is a system whereby audio data is stored or represented in the
frequency domain as opposed to the time domain as amplitude values as is more typical.
Working with FFT data facilitates transformations and manipulations that are not possible, or are
at least more difficult, with audio data stored in other formats.

GEN rountine a GEN (generation) routine is a mechanism within Csound used to create function
tables of data that will be held in RAM for all or part of the performance. A GEN routine could be
a waveform, a stored sound sample, a list of explicitly defined number such as tunings for a
special musical scale or an amplitude envelope. In the past function tables could only be created
only in the Csound score but now they can also be created (and deleted and over-written) within
the orchestra.

GUI Graphical User Interface refers to a system of on-screen sliders, buttons etc. used to
interact with Csound, normally in realtime.

i-time or init-time or i-rate signify the time in which all the variables starting with an "i" get
their values. These values are just given once for an instrument call. See the chapter about
Initialization And Performance Pass for more information.

k-loop see control cycle

k-time is the time during the performance of an instrument, after the initialization. Variables
starting with a "k" can alter their values in each ->control cycle. See the chapter about
Initialization And Performance Pass for more information.



k-rate see control rate

opcode the code word of a basic building block with which Csound code is written. As well as the
opcode code word an opcode will commonly provide output arguments (variables), listed to the
left of the opcode, and input arguments (variables). listed to the right of the opcode. An opcode
is equivalent to a 'ugen' (unit generator) in other languages.

orchestra as in the Csound orchestra, is the section of Csound code where traditionally the
instruments are written. In the past the 'orchestra’ was one of two text files along with the
'score' that were needed to run Csound. Most people nowadays combine these two sections,
along with other optional sections in a .csd (unified) Csound file. The orchestra will also normally
contain header statements which will define global aspects of the Csound performance such as
sampling rate.

p-field a 'p' (parameter) field normally refers to a value contained within the list of values after
an event item with the Csound score.

performance pass see control cycle

score as in the Csound score, is the section of Csound code where note events are written that
will instruct instruments within the Csound orchestra to play. The score can also contain function
tables. In the past the 'score' was one of two text files along with the 'orchestra’ that were
needed to run Csound. Most people nowadays combine these two sections, along with other
optional sections in a .csd (unified) Csound file.

time stretching can be done in various ways in Csound. See sndwarp, waveset, pvstanal and
the Granular Synthesis opcodes. In the frequency domain, you can use the pvs-opcodes

pvsfread, pvsdiskin, pvscale, pvshift.

widget normally refers to some sort of standard GUI element such as a slider or a button. GUI
widgets normally permit some user modifications such as size, positioning colours etc. A variety
options are available for the creation of widgets usable by Csound, from it own built-in FLTK
widgets to those provided by front-ends such as CsoundQT, Cabbage and Blue.



67. LINKS

DOWNLOADS

Csound: http://sourceforge.net/projects/csound/files,

Csound's User Defined Opcodes: http://www.csounds.com/udo/
CsoundQt: http://sourceforge.net/projects/qutecsound/files,
WinXound:http://winxound.codeplex.com

Blue: http://sourceforge.net/projects/bluemusic/files/

Cabbage: http://code.google.com/p/cabbage

COMMUNITY

Csound's info page on sourceforge is a good collection of links and basic infos.

csounds.com is the main page for the Csound community, including news, online tutorial, forums
and many links.

The Csound Journal is a main source for different aspects of working with Csound.

MAILING LISTS AND BUG TRACKER

To subscribe to the Csound User Discussion List, send a message with "subscribe csound <your
name>" in the message body to sympa@lists.bath.ac.uk. To post, send messages to
csound@lists.bath.ac.uk. You can search in the list archive at nabble.com.

To subscribe to the CsoundQt User Discussion List, go to

https://lists.sourceforge.net/lists/listinfo/qutecsound-users. You can browse the list archive here.
Csound Developer Discussions: https://lists.sourceforge.net/lists/listinfo/csound-devel
Blue: http://sourceforge.net/mail/?group_id=74382

Please report any bug you experienced in Csound at http://sourceforge.net/tracker/?
group_id=81968&atid=564599, and a CsoundQt related bug at http://sourceforge.net/tracker/?
func=browse&group_id=227265&atid=1070588. Every bug report is an important contribution.

TUTORIALS

A Beginning Tutorial is a short introduction from Barry Vercoe, the "father of Csound".

An Instrument Design TOOTorial by Richard Boulanger (1991) is another classical introduction, still
very worth to read.

Introduction to Sound Design in Csound also by Richard Boulanger, is the first chapter of the
famous Csound Book (2000).

Virtual Sound by Alessandro Cipriani and Maurizio Giri (2000)

A Csound Tutorial by Michael Gogins (2009), one of the main Csound Developers.

VIDEO TUTORIALS

A playlist as overview by Alex Hofmann:



http://www.youtube.com/view_play_list?p=3EE3219702D17FD3

CsoundQt (QuteCsound)

QuteCsound: Where to start?
http://www.youtube.com/watch?v=0XcQ3Req/TM

First instrument:

http://www.youtube.com/watch?v=P500yFyNaCA

Using MIDI:
http://www.youtube.com/watch?v=8zszIN_N3b

About configuration:
http://www.youtube.com/watch?v=KgYea5s8tFs

Presets tutorial:

http://www.youtube.com/watch?v=KKICTxmzcS0
http://www.youtube.com/watch?v=aES-ZfanF3c

Live Events tutorial:

http://www.youtube.com/watch?v=09WU7DzdUmE
http://www.youtube.com/watch?v=Hs3e070349k
http://www.youtube.com/watch?v=yUMzp6556Kw

New editing features in 0.6.0:

http://www.youtube.com/watch?v=Hk1gPInyv88
Csoundo (Csound and Processing)
http://csoundblog.com/2010/08/csound-processing-experiment -i

Open Sound Control in Csound

http://www.youtube.com/watch?v=]X1C3TgP_9Y

THE CSOUND CONFERENCE IN HANNOVER (2011)

Web page with papers and program.

All Videos can be found via the YoutTube channel csconf2011.

EXAMPLE COLLECTIONS

Csound Realtime Examples by lain McCurdy is one of the most inspiring and up-to-date
collections.

The Amsterdam Catalog by John-Philipp Gather is particularily interesting because of the
adaption of Jean-Claude Risset's famous "Introductory Catalogue of Computer Synthesized
Sounds" from 1969.

BOOKS

The Csound Book (2000) edited by Richard Boulanger is still the compendium for anyone who
really wants to go in depth with Csound.

Virtual Sound by Alessandro Cipriani and Maurizio Giri (2000)

Signale, Systeme, und Klangsysteme by Martin Neukom (2003, german) has many interesting
examples in Csound.



The Audio Programming Book edited by Richard Boulanger and Victor Lazzarini (2011) is a major
source with many references to Csound.

Csound Power! by Jim Aikin (2012) is a perfect up-to-date introduction for beginners.



68 - BUILDING CSOUND

Currently (April 2012) a collection of build instructions has been started at the Csound Media Wiki
at Sourceforge. Please have a look there if you have problems in building Csound.

LINUX

Debian

On Wheezy with an amd64 architecture.

Download a copy of the Csound sources from the Sourceforge. To do so, in the terminal type:
git clone --depth 1 git://csound.git.sourceforge.net/gitroot/csound/csound5

Use aptitude to get (at least) the dependencies for a basic build, which are: libsndfilel-dev,
python2.6-dev, scons. To do so, use the following command (with sudo or as root):

aptitude install libsndfilel-dev python2.6-dev scons

There are many more optional dependencies, which are recommended to get in most cases
(some are already part of Debian), and which are documented here. | built with the following
libraries installed: libportaudiocppO0, alsa, libportmidiO, libfltk1.1, swig2.0, libfluidsynthl and liblo7. To
install them (some might already be in your sistem), type:

aptitude install libportaudiocpp0 alsa libportmidiO libfltk1.1 swig2.0 libfluidsynth1 liblo7

Go inside the csound5/ folder you downloaded from sourceforge, and edit build-linux-double.sh in
order to meet your building needs, once again, read about the options in the Build Csound section
of the manual.

On amd64 architectures, it is IMPORTANT to change gcc4opt=atom to gccdopt=generic
(otherwise it will build for single processor). | also used buildNewParser=0, since | could not get to
compile with the new parser. To finally build, run the script:

./build-linux-double.sh
If the installation was successful, use the following command to install:
Jinstall.py

Make sure that the following environment
variables are set:

OPCODEDIR64=/usr/local/lib/csound/plugins64
CSSTRNGS=/usr/local/share/locale

If you built the python interface, move the csnd.py and -csnd.so from /usr/lib/python2.6/site-
packages/ to /usr/lib/python2.6/dist-packages/ (the standard place for external Python modules
since version 2.6). You can do so with the following commands:

[usr/lib/python2.6/site-packages/csnd.py /usr/lib/python2.6/dist-packages/
Jusr/lib/python2.6/site-packages/_csnd.so /usr/lib/python2.6/dist-packages/

If you want to un-install, you can do so by running the following command:
Jusr/local/bin/uninstall-csound5

Good luck!



Ubuntu

1. Download the sources. Either the last stable release from
http://sourceforge.net/projects/csound/files/csound5/ or the latest (possible unstable) sources
from git (running the command git clone git://csound.git.sourceforge.net/gitroot/csound/csound5).

2. Open a Terminal window and run the command

sudo apt-get install csound
This should install all the dependencies which are needed to build Csound.
3. Change the directory to the folder you have downloaded in step 1, using the command cd.

4. Run the command scons. You can start with

scons -h

to check the configuration and choose your options. See the Build Csound section of the manual
for more information about the options. If you want to build the standard configuration, just run
scons without any options.

If you get an error, these are possible reasons:

e You must install bison and flex to use the new parser.
e If there is a complaint about not finding a file called custom.py, copy the file custom-linux-
jpff.py and rename it as custom.py.

There is also a detailed instruction by Menno Knevel at csounds.com which may help.

5. Run

sudo python install.py

You should now be able to run csound by the command /usr/local/bin/csound, or simply by the
command csound.

OSX

As mentioned above, have a look at http://sourceforge.net/apps/mediawiki/csound/index.php?
title=Main_Page.

WINDOWS

There is a detailed description of Michael Gogins, entitled How to Build Csound on Windows in the
Csound Sources. You can either download the Csound Sources at
tp://sourceforge.net/projects/csound/files/csound5 or get the latest version at the Csound Git

Repository.



69 METHODS OF WRITING CSOUND
SCORES

Although the use of Csound real-time has become more prevalent and arguably more important
whilst the use if the score has diminished and become less important, composing using score
events within the Csound score remains an important bedrock to working with Csound. There
are many methods for writing Csound score several of which are covered here, starting with the
classical method of writing scores by hand, and concluding with the definition of a user-defined
score language.

WRITING SCORE BY HAND

In Csound's original incarnation the orchestra and score existed as separate text files. This
arrangement existed partly in an attempt to appeal to composers who had come from a
background of writing for conventional instruments by providing a more familiar paradigm. The
three unavoidable attributes of a note event - which instrument plays it, when, and for how long
- were hardwired into the structure of a note event through its first three attributes or 'p-fields'.
All additional attributes (p4 and beyond), for example: dynamic, pitch, timbre, were left to the
discretion of the composer, much as they would be when writing for conventional instruments. It
is often overlooked that when writing score events in Csound we define start times and
durations in 'beats'. It just so happens that 1 beat defaults to a duration of 1 second leading to
the consequence that many Csound users spend years thinking that they are specifying note
events in terms of seconds rather than beats. This default setting can easily be modified and
manipulated as shown later on.

The most basic score event as described above might be something like this:
i105

which would demand that instrument number '1' play a note at time zero (beats) for 5 beats.
After time of constructing a score in this manner it quickly becomes apparent that certain
patterns and repetitions recur. Frequently a single instrument will be called repeatedly to play
the notes that form a longer phrase therefore diminishing the worth of repeatedly typing the
same instrument number for pl, an instrument may play a long sequence of notes of the same
duration as in a phrase of running semiquavers rendering the task of inputting the same value
for p3 over and over again slightly tedious and often a note will follow on immediately after the
previous one as in a legato phrase intimating that the p2 start-time of that note might better be
derived from the duration and start-time of the previous note by the computer than to be
figured out by the composer. Inevitably short-cuts were added to the syntax to simplify these
kinds of tasks:

il10160
il11161
i12162
il13163
il14164

could now be expressed as:

1 (0]

e e e
++++0
RPRRRR
oV V Vo

4

where "." would indicate that that p-field would reuse the same p-field value from the previous
score event, where '+', unique for p2, would indicate that the start time would follow on
immediately after the previous note had ended and '>' would create a linear ramp from the first
explicitly defined value (60) to the next explicitly defined value (64) in that p-field column (p4).

A more recent refinement of the p2 shortcut allows for staccato notes where the rhythm and
timing remain unaffected. Each note lasts for 1/10 of a beat and each follows one second after
the previous.



i1e .1 60
i A+ >
i A1 0>
i A+1 .0 >
i . A+1 . 64

The benefits offered by these short cuts quickly becomes apparent when working on longer
scores. In particular the editing of critical values once, rather than many times is soon
appreciated.

Taking a step further back, a myriad of score tools, mostly also identified by a single letter, exist
to manipulate entire sections of score. As previously mentioned Csound defaults to giving each
beat a duration of 1 second which corresponds to this 't' statement at the beginning of a score:

t 0 60

"At time (beat) zero set tempo to 60 beats per minute"; but this could easily be anything else or
evena string of tempo change events following the format of a linsegb statement.

t 0 120 5 120 5 90 10 60

This time tempo begins at 120bpm and remains steady until the 5th beat, whereupon there is an
immediate change to 90bpm; thereafter the tempo declines in linear fashion until the 10th beat
when the tempo has reached 60bpm.

'm' statements allow us to define sections of the score that might be repeated ('s' statements
marking the end of that section). 'n' statements referencing the name given to the original 'm'
statement via their first parameter field will call for a repetition of that section.

m verse
i1o0 1 60
i AL L >
i A+ L >
i A+l L >
i A+1 . 64
s

n verse

n verse

n verse

Here a 'verse' section is first defined using an 'm' section (the section is also played at this
stage). 's' marks the end of the section definition and 'n' recalls this section three more times.

Just a selection of the techniques and shortcuts available for hand-writing scores have been
introduced here (refer to the Csound Reference Manual for a more encyclopedic overview). It has
hopefully become clear however that with a full knowledge and implementation of these
techniques the user can adeptly and efficiently write and manipulate scores by hand.

EXTENSION OF THE SCORE LANGUAGE: BIN="..."

It is possible to pass the score as written through a pre-processor before it is used by Csound to
play notes. instead it can be first interpretted by a binary (application), which produces a usual
csound score as a result. This is done by the statement bin="..." in the <CsScore> tag. What
happens?

1. If just a binary is specified, this binary is called and two files are passed to it:
a. A copy of the user written score. This file has the suffix .ext
b. An empty file which will be read after the interpretation by Csound. This file has the
usual score suffix .sco
2. If a binary and a script is specified, the binary calls the script and passes the two files to
the script.

If you have Python! installed on your computer, you should be able to run the following
examples. They do actually nothing but print the arguments (= file names).

EXAMPLE ...csd: Calling a binary without a script

<CsoundSynthesizer>
<CsInstruments>
instr 1

endin



</CsInstruments>

<CsScore bin="python">

from sys import argv

print "File to read = '%s'" % argv[O]
print "File to write = '%s'" % argv[1]
</CsScore>

</CsoundSynthesizer>

When you execute this .csd file in the terminal, your output should include something like this:

File to read = '/tmp/csound-idWDwO.ext'
File to write = '/tmp/csound-EdvgYC.sco'

And there should be a complaint because the empty .sco file has not been written:
cannot open scorefile /tmp/csound-EdvgYC.sco
EXAMPLE .... csd: Calling a binary and a script

To test this, first save this file as print.py in the same folder where your .csd examples are:

from sys import argv

print "Script = '%s'" % argv[0]

print "File to read = '%s'" % argv[1]
print "File to write = '%s'" % argv[2]

Then run the ....csd:

<CsoundSynthesizer>
<CsInstruments>

instr 1

endin

</CsInstruments>

<CsScore bin="python print.py">
</CsScore>

</CsoundSynthesizer>
The output should include these lines:
Script = 'print.py'

File to read = '/tmp/csound-jwZ9Uy.ext'
File to write = '/tmp/csound-NbMTfJ.sco'

And again a complaint about the invalid score file:

cannot open scorefile /tmp/csound-NbMTfJ.sco

csbeats

Scripts

Scripting Language Examples

The following script uses a perl script to allow seeding options in the score. A random seed can
be set as a comment; like ";;SEED 123". If no seed has been set, the current system clock is
used. So there will be a different value for the first three random statements, while the last two
statements will always generate the same values.

<CsoundSynthesizer>
<CsInstruments>
;example by tito latini

instr 1

prints "amp = %f, freq = %f\n", p4, p5;
endin
</CsInstruments>

<CsScore bin="perl cs_sco_rand.pl">



i1 @ .01 rand() [2060 + rand(30)]
i1 o+ rand() [4060 + rand(80)]
ii + . rand() [600 + rand(160)]
;; SEED 123

i1 o+ rand() [750 + rand(200)]
i1 o+ rand() [210 + rand(20)]
e

</CsScore>

</CsoundSynthesizer>

# cs_sco_rand.pl

my ($in, $out) = @ARGV;
open(EXT, "<", $in);
open(sco, ">", $out);

while (<EXT>) {
s/SEED\s+(\d+)/srand($1); $&/e;
s/rand\(\d*\)/eval $&/ge;
print SCO;

}

1. www.python.org:



